Staying Ahead of the DOE 2017 Walk-In Cooler and Freezer Energy Efficiency Ratings

October 21, 2014

Ani Jayanth

Foodservice Marketing Manager *Emerson Climate Technologies*

Brian Buynacek, PE, LEED AP

Refrigeration Engineer Emerson Climate Technologies

Webinar Objectives

WICF & AWEF Rulemaking Overview:

- 1. Understand WICF rulemaking
- 2. Understand specifics of TSD
- 3. Understand cost-efficiency design options
- **Alternative Refrigerants Note:**

AWEF Calculation & Technology Guidance:

- 1. AWEF for indoor and outdoor condensing units
- 2. BIN temperature analysis
- 3. AWEF minimums for 2017
- Differences between AHRI 1250 and DOE interpretation 4.
- Importance of floating head pressure 5.
- 6. Example pass/fail calculations

Ani Jayanth

Ani Jayanth

Brian Buynacek

WICF & AWEF Rulemaking Overview

Ani Jayanth

WICF & AWEF Rulemaking Overview

- 1. Understand WICF rulemaking
- 2. Understand specifics of TSD
- 3. Understand cost-efficiency design options

Definitions

Walk-in Cooler and Freezer (WICF)	The Energy Policy and Conservation Act (EPCA) defines "walk-in cooler" and "walk-in freezer" as an enclosed storage space refrigerated to temperatures, respectively, above, and at or below 32 ° F that can be walked into, and has a total chilled storage area of less than 3,000 ft ² . The definition excludes products designed and marketed exclusively for medical, scientific or research purposes. (42 U.S.C. 6311[20])
Notice of Public Rulemaking (NOPR)	Federal document released to inform parties of intensions of altering or offering new rulemaking
Supplemental Notice of Public Rulemaking (SNOPR)	Further information collected from stakeholders and additional supporting information attached to original NOPR
Final Rule	Federal document released to inform stakeholders of new mandated regulatory compliance standards
Technical Support Document (TSD)	Document released to justify rulemaking with engineering and economic analyses
Trial Standard Level (TSL)	The level adopted for final rule which determines the acceptable energy efficiency with respect to operational and capital costs
Annual Walk-in Energy Factor (AWEF)	Ratio of heat removed from the envelope to the total energy input of the refrigeration system

WICF & AWEF Documents

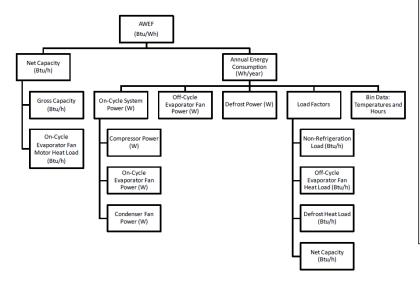
		Key Documents			
	Туре	Description	Key Piece of Information in Relation to AWEF	Location	
1	Final Rule	Summary of rulemaking, TSD, test procedure and framework for understanding and rulemaking	Table I.1 Table V.10 Table V.47	http://www.regulations.gov/#ldocument Detail:D=EERE:2008-BT-STD-0015- 0141	
2	Technical Support Document (TSD)	Technical analysis and results supporting information presented in NOPR leading to final rule	Chapter 5 – Refrigeration System Chapter 7 – Refrigeration Energy Use	http://www.regulations.gov/#ldocument Detail:D=EERE-2008-BT-STD-0015- 0131	
3	Support Documents	Public commentary, webinars, component calculators, other	Industry Commentary	http://www.regulations.gov/#ldocketBro wser:rpp=25:so=DESC:sb=postedDate; po=0:D=EERE-2011-BT-TP-0024	
4	Final Rule Engineering Analysis Refrigeration Spreadsheet	XLS spreadsheet with all components related to determining AWEF for the refrigeration system and content loaded from TSD	Calculation Tab	http://www.regulations.gov/#ldocument Detail;D=EERE-2008-8T-STD-0015- 0137	
5	Walk-in Standards	AHRI 1250-2009 test requirements; rating requirements; minimum data requirements for Published Ratings	Procedures and Test Standards for AWEF	http://www.ari.org/App_Content/ahrifiles /standards%20pdfs/AHRI%20standards %20pdfs/AHRI_1250_(I-P)-2014.pdf	
6	AWEF Calculator	AHRI 1250-2009	Calculations for AWEF	http://www.ari.org/App_Content/ahri/files /standards%20pdfs/AHRI%20standards %20pdfs/AHRI_1250_(I-P)-2014.pdf	

A Note on Technical Support Document

Research & Analysis

- Ernest Orlando Lawrence Berkeley National Laboratory
- Navigant Consulting, Inc.

Table 1.4.1 Analyses Under th	e Hotess Kule	
Preliminary Analyses	NOPR	Final Rule
Market and technology	Revised preliminary analyses	Revised NOPR analyses
assessment		
Screening analysis	Life-cycle cost sub-group	
	analysis	
Engineering analysis	Manufacturer impact analysis	
Markups for equipment price	Environmental assessment	
determination		
Life-cycle cost and payback	Employment impact analysis	
period		
Shipment analysis	Regulatory impact analysis	
National impact analysis		
Preliminary manufacturer impact		
analysis		

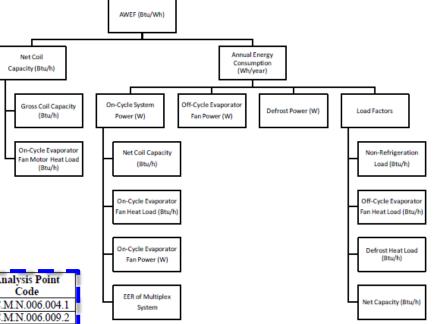

Table 1.4.1 Analyses Under the Process Rule

Refrigeration System Classification

Dedicated Condensing

- Refrigeration system means the mechanism (including all controls and other components integral to the system's operation) used to create the refrigerated environment in the interior of a walk-in cooler or freezer, consisting of any of the following:
 - Indoor/outdoor
 - Single walk-in feed
 - A packaged dedicated system where the unit cooler and condensing unit are integrated into a single piece of equipment
 - A split dedicated system with separate unit cooler and condensing unit sections

Table 5.3.4 Analysis Points: Dedicated Condensing Refrigeration Systems

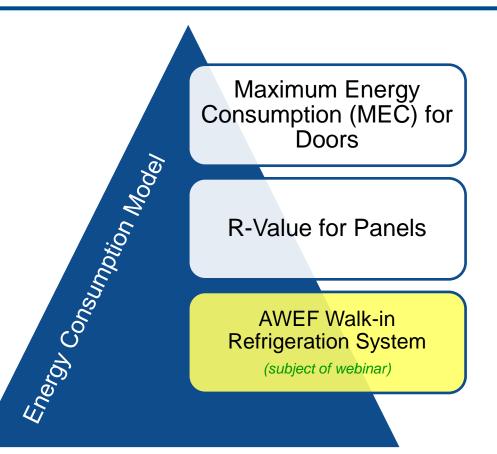

Condensing	Temperature	Condenser	Size	Class	frigeration S Compressor	Capacity	Analysis Point
Type	remperature	Location	Btu/h	Code	Туре	Btu/h	Code
				DC.M.I-	Hermetic	6.000	DC.M.I.HER.006
			<9,000	<9,000	Semihermetic	6.000	DC.M.I.SEM.006
					Hermetic	18,000	DC.M.I.HER.018
					Scrol1	18,000	DC.M.I.SCR.018
	Medium			DOM	Semihermetic	18,000	DC.M.I.SEM.018
			≥9,000	DC.M.I- ≥9,000	Scrol1	54,000	DC.M.I.SCR.054
				≥9,000	Semihermetic	54,000	DC.M.I.SEM.054
					Scroll	96,000	DC.M.I.SCR.096
		Indoor			Semihermetic	96,000	DC.M.I.SEM.096
			DC.L.I-	Hermetic	6,000	DC.L.I.HER.006	
			<9,000	<9.000	Scroll	6,000	DC.L.I.SCR.006
				-9,000	Semihermetic	6,000	DC.L.I.SEM.006
	Low				Hermetic	9,000	DC.L.I.HER.009
	2011		≥9,000	DC.L.I- ≥9,000	Scrol1	9,000	DC.L.I.SCR.009
					Semihermetic	9,000	DC.L.I.SEM.009
					Scroll	54,000	DC.L.I.SCR.054
Dedicated					Semihermetic	54,000	DC.L.I.SEM.054
Condensing			<9.000	DC.M.O-	Hermetic	6,000	DC.M.O.HER.006
contactioning				<9,000	Semihermetic	6,000	DC.M.O.SEM.006
				00 DC.M.O- ≥9,000	Hermetic	18,000	DC.M.O.HER.018
			≥9,000		Scroll	18,000	DC.M.O.SCR.018
	Medium				Semihermetic	18,000	DC.M.O.SEM.018
					Scrol1	54,000	DC.M.O.SCR.054
					Semihermetic	54,000	DC.M.O.SEM.054
					Scroll	96,000	DC.M.O.SCR.096
		Outdoor			Semihermetic	96,000	DC.M.O.SEM.096
		0 4140 01		DC.L.O-	Hermetic	6,000	DC.L.O.HER.006
			<9,000	<9.000	Scroll	6,000	DC.L.O.SCR.006
				- ,	Semihermetic	6,000	DC.L.O.SEM.006
	-				Hermetic	9,000	DC.L.O.HER.009
	Low				Scroll	9,000	DC.L.O.SCR.009
			≥9,000	DC.L.O-	Semihermetic	9,000	DC.L.O.SEM.009
				≥9,000	Scroll	54,000	DC.L.O.SCR.054
					Semihermetic	54,000	DC.L.O.SEM.054
					Semihermetic	72,000	DC.L.O.SEM.072

Refrigeration System Classification

Multiplex Condensing

- Refrigeration system means the mechanism (including all controls and other components integral to the system's operation) used to create the refrigerated environment in the interior of a walk-in cooler or freezer, consisting of any of the following:
 - Unit Coolers Matched To Multiplex Condensing Rack System

Condensing Type	Temperature	Class Code	Number of Fins per Inch	Capacity Btu/h	Number of Fans	Analysis Point Code
			6	4,000	1	MC.M.N.006.004.1
		MC.M	6	9,000	2	MC.M.N.006.009.2
	Medium	IVIC.IVI	6	24,000	6	MC.M.N.006.024.6
			4	4,000	1	MC.M.N.004.004.1
			4	9,000	2	MC.M.N.004.009.2
Multiplex	Low	MC.L	6	4,000	1	MC.L.N.006.004.1
Condensing			6	9,000	2	MC.L.N.006.009.2
			6	18,000	2	MC.L.N.006.018.2
			4	4,000	1	MC.L.N.004.004.1
			4	9,000	2	MC.L.N.004.009.2
			4	18,000	2	MC.L.N.004.018.2
			4	40,000	2	MC.L.N.004.040.2


Table 5.3.5 Analysis Points: Multiplex Condensing Refrigeration Systems

Walk-in Cooler & Freezer Energy Conservation Standards

Standards for WICF

- 1. Cost Model
 - Market baseline information
 - Material, labor, depreciation, other costs
- 2. Energy Model
 - Existing technology assessment
 - Technology options from screening analysis
 - Energy consumption model
 - Output of energy model: costefficiency curve for each equipment class and for each component analyzed

"...shall be designed to achieve the maximum improvement in energy efficiency that DOE determines is both technologically feasible and economically justified...the new or amended standard must result in the significant conservation of energy."

Final Rule Methodology

Dedicated Condensing & Multiplex Condensing
 Table 5.3.4 Analysis Points: Dedicated Condensing Refrigeration System:

 Condensing
 Temperature
 Condenser
 Size
 Class
 Compressor
 Capace
 Analysis Point Code Size Btu/h Class Code Compressor Type Capacit Btu/h Type Location DC.M.I

Analysis Point Code

Hermetic

mihermetic

<9,000

<9,000 DC.M.O <9.000

Medium

Low

Medium

Low

Medium

Low

Multiplex Condensing

Dedicated Condensing

Indoo

Outdoor

 Table 5.3.5 Analysis Points: Multiplex Condensing Refrigeration Systems

 Condensing Temperature
 Class Code
 Number of Fins per Inch
 Capacity
 Number

 Type
 Class Code
 Fins per Inch
 Bruch
 Fins
 Fins

MC.M

MC.L

<9,000

DC.M.I--9.000 ≥9,000

DC.L.I-<9.000 <9,000

DC.L.I-≥9,000 ≥9,000

DC.M.O-≥9,000 ≥9,000

DCLO. <9.000 <9,000

DC.L.O-≥9,000 ≥9,000

	E di se di des		Equations for minimu	ım AWEF (Btu/W-h)*	
•	Equipment class	Baseline	TSL 1	TSL 2	TSL 3
	DC.M.I, <9,000	3.51	5.61	5.61	5.61
	DC.M.I. ≥9.000	3.51	5.61	5.61	5.61
	DC.M.Ó, <9,000	3.14	6.99	7.60	7.60
	DC.M.O, ≥9,000	3.14	6.99	7.60	7.60
	DC.L.I, <9,000	$1.39 \times 10^{-4} \times Q$ +	$8.67 \times 10^{-5} \times Q +$	$5.93 \times 10^{-5} \times Q +$	$5.93 \times 10^{-5} \times Q$
		0.98	2.00	2.33	2.33
	DC.L.I, ≥9,000	2.23	2.78	3.10	3.10
	DC.L.O, <9,000	$1.96 \times 10^{-4} \times Q$ +	$3.21 \times 10^{-4} \times Q +$	$2.30 \times 10^{-4} \times Q +$	$2.30 \times 10^{-4} \times Q$
·		0.82	1.29	2.73	2.73
	DC.L.O, ≥9,000	2.57	4.17	4.79	4.79
	MC.M	6.11	10.89	10.89	10.89
	MC.L	3.29	5.58	6.57	6.57

Technology Exploration / Cost Model Analysis / Baseline Model Analysis

Class descriptor	Class	Standard level
Refrigeration Systems		Minimum AWEF (Btu/W-h)*
Dedicated Condensing, Medium Temperature, Indoor System, <9,000 Btu/h Capacity Dedicated Condensing, Medium Temperature, Indoor System, ≥9,000 Btu/h Capacity Dedicated Condensing, Medium Temperature, Outdoor System, <9,000 Btu/h Capacity Dedicated Condensing, Medium Temperature, Outdoor System, >9,000 Btu/h Capacity Dedicated Condensing, Low Temperature, Indoor System, >9,000 Btu/h Capacity Dedicated Condensing, Low Temperature, Indoor System, >9,000 Btu/h Capacity Dedicated Condensing, Low Temperature, Outdoor System, >9,000 Btu/h Capacity Dedicated Condensing, Low Temperature, Outdoor System, >9,000 Btu/h Capacity Dedicated Condensing, Low Temperature, Outdoor System, >9,000 Btu/h Capacity Dedicated Condensing, Low Temperature Multiplex Condensing, Low Temperature Multiplex Condensing, Low Temperature	DC.M.I, <9,000 DC.M.I, ≥9,000 DC.M.O, <9,000 DC.L.I, <9,000 DC.L.I, ≥9,000 DC.L.I, ≥9,000 DC.L.O, <9,000 DC.L.O, <9,000 MC.M	5.61 5.61 7.60 7.60 5.93 × 10 ⁻⁵ × Q + 2.33 3.10 2.30 × 10 ⁻⁴ × Q + 2.73 4.79 10.89 6.57

Q = system gross capacity

2

3

Meeting AWEF

Example: Dedicated Condensing-Low Temp-Outdoor-Scroll-54K Btu/H

TABLE I. I-ENERGY	CONSERVATION STANDARDS FOR WALK-IN CO	OLERS AND WA	LK-IN FREEZERS	Table 5A.5.43 Cost-				
	Class descriptor	Class	Standard level	Efficiency Level	AWEF [Btu/Wh]	Manufacturer Production Cost	Manufacturer Selling Price	Design Op
ation Systems			Minimum AWEF (Btu/W-h)*	10		(MPC) [\$]	(MSP) [\$]	D
ed Condensing, Medium Tem		DC.M.I, <9,000	5.61	LO	2.00	\$6,819	\$10,564	Baseline
		DC.M.I, ≥9,000	5.61	L1	2.28	\$6,849	\$10,605	L0 + FHP
		DC.M.O, <9,000 DC.M.O, ≥9,000	7.60 7.60	L2	2.58	\$6,899	\$10,672	L1 + DFC1
		DC.L.I, <9,000	$5.93 \times 10^{-5} \times Q + 2.33$	L3	2.78	\$6,949	\$10,740	L2 + MEF
		DC.L.I. ≥9.000	3.10	L4	2.93	\$6,999	\$10,807	L3 + VEF
ed Condensing, Low Tempera	ture, Outdoor System, <9,000 Btu/h Capacity	DC.L.O, <9,000	$2.30 \times 10^{-4} \times Q + 2.73$	L5	3.69	\$7,239	\$11.131	L4 + HGD
		DC.L.O, ≥9,000	4.79					
		MC.M	10.89	L6	4.17	\$7,389	\$11,334	L5 + FHPEV
x Condensing, Low Temperati	ure	MC.L	6.57	L7	4.38	\$7,489	\$11,469	L6 + VSCF
				LS	4.43	\$7,506	\$11,491	L7 + EC
				1.9	4.47	\$7,588	\$11.602	L8 + EB2
Table 5 5 29 Design	Option Codes and Descriptions for Refrige	eration System	s	L10	5.22	\$9,668	\$14,411	L9 + CMP2
Design Option Code	Description					4 - 1		
- Denga option cout	High-Efficiency Compressor			L11	5.23	\$9,693	\$14,444	L10 + CB2
CMP1	Baseline Compressor			L12	5.26	\$9,839	\$14,703	L11 + ASC
CMP2	Variable Speed Compressor				1		-	
	Improved Condenser Coil							
CD1	Baseline Coil							
CD2	Improved Coil				DC	C.L.O.SCR.054.H		(
PSC	High-Efficiency Condenser Fan Motors Permanent Split Capacitor Motors			\$12,000				
EC	Electronically Commutated Motors			\$12,000				
EC	Improved Condenser Fan Blades			1 M		Cost		
CB1	Baseline Condenser Fan Blades			H ¢10.000		<u>Cost</u> +\$2.8 +41°	K	.
CB2	Improved Condenser Fan Blades			ts \$10,000		+\$2.0		
	Condenser Fan Control			Ŭ		. 10	/0	
SSCF	Single Speed Condenser Fans			5 \$8,000		+41	/	
VSCF	Variable Speed Condenser Fans			brod uction \$6,000	-		A	
	Ambient Sub-cooling			1 <u>5</u>	0	* · * · ***		
NOASC	No Ambient Sub-cooling			5 \$6,000	-			
ASC	Ambient Sub-cooling			2 +0,000				
EB1	Improved Evaporator Fan Blades Baseline Evaporator Fan Blades							
EB1 EB2	Improved Evaporator Fan Blades	———————————————————————————————————————		b \$4,000				
LD2	Evaporator Fan Controls			Ę				
SSEF	Single Speed Evaporator Fans			000,2\$ Wanufactu				
MEF	Modulating Evaporator Fans			\$2,000				
VEF	Variable Speed Evaporator Fans			1				
	Defrost Controls			5				
NODFC	Time-initiated, Temperature-terminated Defrost			\$0 -				
DFC1	Temperature-initiated, Temperature-terminated Def	frost		- 0.0	1.0	2.0 3.0	4.0	5.0 6.0
ET D	Hot Gas Defrost					AWEF [Btu/	wh1	
ELD HGD	Electric Defrost					AWEF [btu/		
HGD	Hot Gas Defrost Head Pressure Control							
FXHP	Fixed Head Pressure							
	Floating Head Pressure							
FHP								

Sense

DOE Design Options to Meet AWEF Summary

Option	DC Outdoor LT/MT	DC Indoor LT/MT	MC LT/MT
1	Floating Head Pressure	Modulating Evaporator Fans	Modulating Evaporator Fans
2	Floating Head Pressure With Electronic Expansion Valve	Variable Speed Evaporator Fans	Variable Speed Evaporator Fans
3	Modulating Evaporator Fans	Improved Coil	Improved Evaporator Fan Blades
4	Electronically Commutated Motors	Improved Condenser Fan Blades	Temperature-initiated, Temperature-terminated Defrost
5	Improved Evaporator Fan Blades	Electronically Commutated Motors	Hot Gas Defrost
6	Improved Condenser Fan Blades	Improved Evaporator Fan Blades	
7	Improved Coil	Temperature-initiated, Temperature- terminated Defrost	
8	Hot Gas Defrost	Hot Gas Defrost	
9	Temperature-initiated, Temperature- terminated Defrost		
10	Variable Speed Compressor		
11	Variable Speed Condenser Fans		
12	Variable Speed Evaporator Fans		
13	Ambient Sub-cooling		

Polling Question #1

What part of the refrigeration will you place the most importance on for improvement to meet AWEF?

- a. Compressor
- b. Condenser coil
- c. Condenser fan motors
- d. Controls
- e. Defrost
- f. Evaporator coil
- g. Evaporator fan motors

Alternative Refrigerants Note

Ani Jayanth

- In 2013 and early 2014, the EPA held stakeholder meetings to get input on which HFCs, if any, could be delisted
- The NOPR to delist was published on August 6 Comments due on October 20
- Making Sense Webinar on Refrigerants
 - http://www.emersonclimate.com/en-US/About Us/industry stewardship/Pages/Making-Sense.aspx
- Links to documents on the EPA website:

Rule:

http://www.epa.gov/ozone/downloads/SAN 5750 SNAP Status Change Rule NPRM signature version-signed 7-9-2014.pdf

Fact sheet:

http://www.epa.gov/ozone/downloads/SAN 5750 SNAP Status Change Rule-Fact Sheet 070714.pdf

NOPR:

http://www.gpo.gov/fdsys/pkg/FR-2014-08-06/pdf/2014-18494.pdf

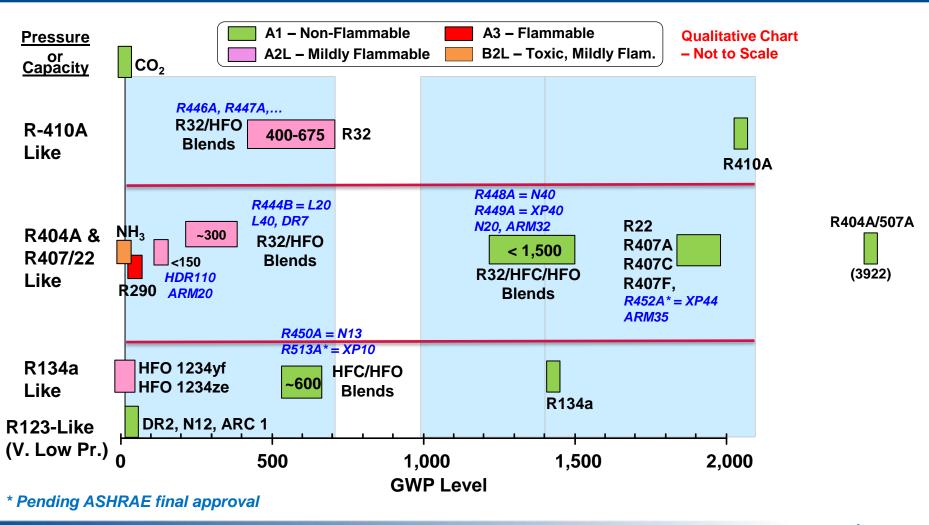
Source: Emerson Climate Technologies

EPA's Proposed Rule on <u>Delisting</u> HFCs by Application

				Standalone Self			
Refrigerant	Supermarket*		Condensing Units* (field charged)	Contained Comm. Ref. Eqpt*	Vending Machines*	Foam	Auto AC
	Direct	Sec.	(ileid charged)	(factory charged sealed systems)			
R404A/507A	Jan 2016	Jan 2016	Jan 2016	Jan 2016	Jan 2016		
HFC-227ea, R-407B, R-421B, R-422A, R-422C, R-422D, R-428A, R-434A	Jan 2016	Jan 2016					
R407A, R407F				Jan 2016 (New)			
R134a				Jan 2016 (New)	Jan 2016 (New)	Jan 2017	2021 Model (New)
Various Blends, GWP 600-3990**				Jan 2016 (New)			
Various Foam Refs**						Jan 2017	
Various Auto Blends**							2017 Model (New)

* New And Retrofit Only; Service Is Allowed

** Check EPA Documents For Details


Aerosol Application Not Shown In Above Table

Industrial, Ice Making Heads, Warehouses and Transport Applications Are Not Included In This NOPR But Comments Have Been Requested

Source: Emerson Climate Technologies

Refrigerant Options for Air Conditioning and Refrigeration Applications

Sense

Emerson View on Available Options (Not a Comprehensive List)

Retail Food Refrigeration	Today	Alternates Today	Future Alternative(s)
Supermarket	R404A/R507A	R407A/F* CO ₂	R448A*, R449A* ARM32*
Condensing Unit (field charged)	R404A/R507A	R407A/F*	R448A*, R449A* ARM32*
Standalone Self	R404A/R507A	R290***	R448A(?), L40** R449A(?), DR7** HDR-110**, ARM20**
Contained Comm. Ref. Equipment (factory charged sealed systems)	f. Equipment		R450A(?) R513A(?) HFO-1234yf** HFO-1234ze**
* May Have Disch. Temp Iss ** A2L – Mildly Flammable	sues For Compressor		cations Required From EPA Redesign Required

Vlakino

Source: Emerson Climate Technologies

*** A3 - Highly Flammable

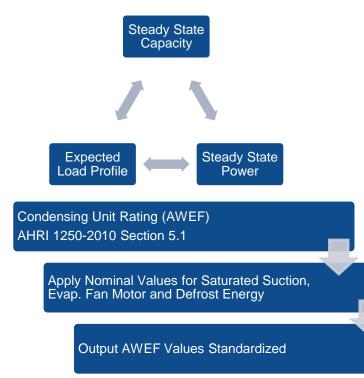
Polling Question #2

Before seeing the last several slides, how clear were you on the DOE's Final Rule on AWEF?

- a. Very clear
- b. Clear
- c. Somewhat clear
- d. I did not know about them

AWEF Calculation & Technology Guidance

Brian Buynacek


AWEF Calculation & Technology Guidance

- 1. AWEF for indoor and outdoor condensing units
- 2. BIN temperature analysis
- 3. AWEF minimums for 2017
- 4. Differences between AHRI 1250 and DOE interpretation
- 5. Importance of floating head pressure
- 6. Example pass/fail calculations

Source: Emerson Climate Technologies

What Is AWEF?

- Ratio of heat removed from the envelope to the total energy input of the refrigeration system
- Metric based on efficiency rather than energy use because of walk-in system sizing and heat load produced
- Assumption that the system is sized appropriately to the load, regardless of envelope characteristics

	Table	2. Standards for	Refrigeration Sys	tems Effective Au	igust 4, 2014	
Condensing Type	Internal Rating Temp. (°F)	Operating Temp. (°F)	Condensing Location	Capacity Range (Btu/h)	Equipment Class Designation*	Minimum AWEF (Btu/W-h)**
Dedicated Condensing	35 (M)	≥ 32	Indoor (I)	<9,000	DC.M.I, < 9,000	5.61
				>9,000	DC.M.I, = 9,000	5.61
			Outdoor (O)	<9,000	DC.M.O, < 9,000	7.60
				>9,000	DC.M.O, = 9,000	7.60
	-10 (L)	≤ 32	Indoor (I)	<9,000	DC.L.I, < 9,000	5.93 × 10 ⁻⁵ × Q + 2.33
				>9,000	DC.L.I, = 9,000	3.10
			Outdoor (O)	<9,000	DC.L.O, < 9,000	2.30 × 10 ⁻⁴ × Q + 2.73
				>9,000	DC.L.O, = 9,000	4.79
Multiplex Condensing	35 (M)	≥ 32	N/A	N/A	MC.M	10.89
	-10 (L)	≤ 32	N/A	N/A	MC.L	6.57

*The meaning of the letters in this column is indicated in the columns to the left

**Q represents the system gross capacity as calculated by the test procedure.

DOE vs. AHRI 1250

TABLE III.5—CALCULATIONS FOR UNIT COOLER SATURATED SUCTION TEMPERATURE AND ENERGY USE FACTORS

	Medium temperature	Low temperature
Saturated Suction Temperature (°F) On-cycle evaporator fan power (W)	25 0.013 × Q*	−20. 0.016 × Q.
Off-cycle evaporator fan power (W)	0.2 × on-c	cycle evaporator fan power.
Electric defrost energy per cycle (W-h/cycle) Electric defrost heat contribution per cycle (Btu/cycle)	0	$8.5 \times 10^{-3} \times Q^{1.27}$ 0.95 × electric defrost energy use per cycle × 3.412.
Hot gas defrost energy per cycle (W-h/cycle)	0	0.5 × hot gas defrost heat contribution per cycle/3.412.
Hot gas defrost heat contribution per cycle (Btu)	0	0.18 × Q.
Number of cycles per day	As specified in installat	tion instructions or, if no instructions, 2.5

*Q represents the gross capacity at the highest ambient rating condition in Btu/h.

Table 18. Unit Cooler Nominal Values for Condensing Unit Energy Calculations

Description	Cooler	Freezer		
Saturated Suction Temperature, °F	25	-20		
On-cycle evaporator fan power, per Btu/h of gross capacity at ambient condition, W-h/Btu	0.016	0.016		
Off-cycle evaporator fan power, W	0.2 on-cycle evaporator fan power			
Electric defrost energy per cycle, per Btu/h of gross capacity, W-h/cycle per Btu/h	0	0.12		
Number of cycles per day	N/A 4			
Daily electric defrost contribution, Btu	0.95 ·daily defrost	energy use ·3.413		

Sense

Source: Department of Energy & AHRI

DOE

Minimum AWEF 2017

	Indoor Condensing Unit	Outdoor Condensing Unit
Medium Temp	5.61	7.60
Low Temp (<2 HP)	0.0000593Q + 2.33	0.00023Q + 2.73
Low Temp (>2 HP)	3.10	4.79
	C) is the unit canacity at -20 °E evan

Q is the unit capacity at -20 °F evap.

Indoor AWEF Example Calculations

1. Low-Temperature Indoor R404A (Freezer)

- $\frac{3}{4}$ HP Q = 3,330 Btu/H E = 875 W
- AWEF (indoor LT -20 °F evap) = 0.502Q / (0.605 E +0.0309 Q) = 2.65
- Min AWEF = 0.0000593 Q + 2.33 = 2.53 "PASS"

2. Medium-Temperature Indoor R134a (Cooler)

- 2 HP Q = 9,990 Btu/H E = 1,425 W
- AWEF (indoor MT +25 °F evap) = 0.285 Q / (0.304 E + 0.0057 Q) = 5.81
- Min AWEF = 5.61 "PASS"

Indoor AWEF Example Condensing Unit Improvements

- Small Indoor Medium Temp Cooler R134a
 - ¹/₂ HP Q=5000 Btu/H E=900W (140W fan motor + 760W compressor)
 - AWEF (indoor MT +25F evap) = 0.285Q / (0.304E + 0.0057Q) = 4.71
 - Min AWEF = 5.61 "FAIL" needs 19% improvement
- Possible improvements: CSR compressor, larger condenser coil, improved airflow, ECM fan motor, alternative refrigerant.
 - If condensing unit power can be reduced to 741W (from 900W) this unit will pass, assuming capacity holds at 5000 Btu/H.
 - Capacitor Start / Capacitor Run compressor model is available and would only draw 706W (not 760W)
 - ECM fan motor would draw less than 40W (not 140W).
 - Better condenser will reduce TD, and compressor will run more efficiently. TD=28.6F in this example.
- Get TD down to 25F and CSR compressor will only draw 693W
 - Now AWEF = 5.67 Pass!

Source: Emerson Climate Technologies

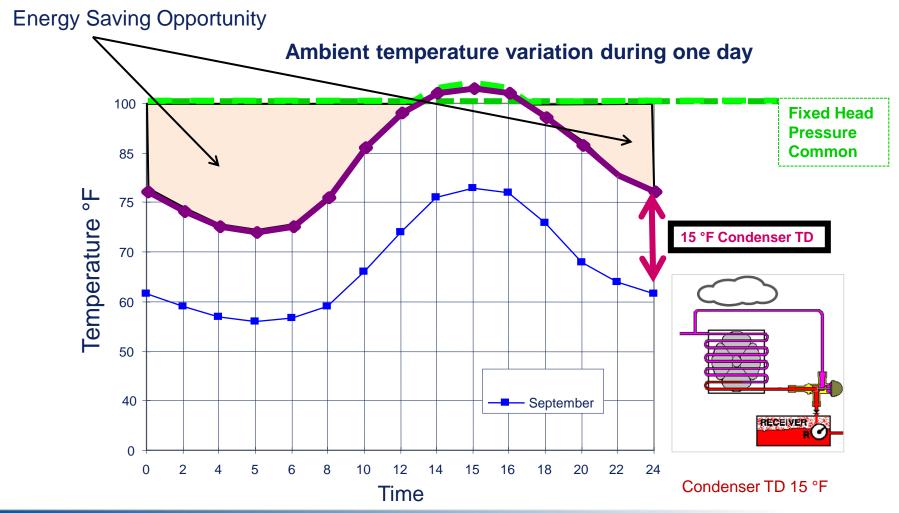
Low-Temp Outdoor Calculation (6 HP)

				Defrost Output		Output	Evap Far	em Watts	acity and Syst	Net Capa			System Input					
			Q_DF [btu/h]	DF [W]	W-h/defrost	EF_comp_off [W]	EF_comp_on [W]	EER [btu/w.h]	Ess [W]	qss [btu/h]	Ambient [F]		Econd (W)	Ecomp (W)	Qgrosss [btu/h]	mbient [F]		
			1789.3	552.0	3312	88.3	442	4.23	6172	26093	95		330	5400	27600	95		
								9.92	4202	41693	59		330	3430	43200	59		
								9.92	4202	41693	35		330	3430	43200	35		
BL[Btu'	E [W-hr]	q [btu]	WLL [btu/h]	WLH [btu/h]	LFL	LFH	BLL [btu/h]	BLH [btu/h]	Ess [W]	qss [btu/h]	Bin Hour [hr]	Temp [F]						
12795	44683.03	144930.6263	12702	23009	0.53	0.97	10773	21210	6467	23753	9	100.4						
102723	319791.4	1168449.658	12385	22703	0.47	0.87	10437	20875	6172	26093	74	95						
348135	974004.4	3976495.171	12065	22392	0.42	0.79	10102	20539	5876	28433	257	89.6						
549562	1391411	6303590.215	11742	22078	0.38	0.72	9766	20204	5581	30773	416	84.2						
811135	1869750	9343399.675	11418	21761	0.34	0.66	9431	19868	5285	33113	630	78.8						
112606	2375977	13027258.18	11092	21441	0.31	0.60	9095	19533	4990	35453	898	73.4						
899448	1745668	10451922.01	10765	21119	0.28	0.56	8760	19197	4694	37793	737	68						
111921	2007048	13065521.39	10437	20796	0.26	0.52	8424	18862	4399	40133	943	62.6						
724286	1240139	8494365.142	10106	20469	0.24	0.49	8089	18526	4202	41693	628	57.2						
660666	1145711	7783859.236	9773	20136	0.23	0.48	7753	18191	4202	41693	590	51.8						
735374	1292409	8706155.258	9440	19803	0.23	0.47	7418	17855	4202	41693	677	46.4						
606341	1080670	7215452.342	9107	19470	0.22	0.47	7082	17520	4202	41693	576	41						
658356	1190774	7877162.239	8774	19137	0.21	0.46	6747	17184	4202	41693	646	35.6						
526299	966776.8	6333598.96	8441	18803	0.20	0.45	6411	16849	4202	41693	534	30.2						
306554	572381.9	3711885.533	8108	18470	0.19	0.44	6076	16513	4202	41693	322	24.8						
280137	532140.7	3414327.818	7775	18137	0.19	0.44	5741	16178	4202	41693	305	19.4						
217693	421118.4	2671914.252	7442	17804	0.18	0.43	5405	15842	4202	41693	246	14						
160911	317331.7	1989860.543	7109	17471	0.17	0.42	5070	15507	4202	41693	189	8.6						
63791	128399.2	795232.2516	6776	17138	0.16	0.41	4734	15171	4202	41693	78	3.2						
39214	8066.418	49311.03945	6443	16805	0.15	0.40	4399	14836	4202	41693	5	-2.2						
991341	19624252	116524691.5	Total															
5.05	AWEF																	
70		mum AWEF for this	N. L. DOF															

- 1. Low-Temp Outdoor R404A (Freezer)
 - 1. 6 HP Q = 27,600 Btu/H
 - 2. AWEF (outdoor LT -20 °F evap) = 5.05
 - 3. Min AWEF = 4.79 "PASS"

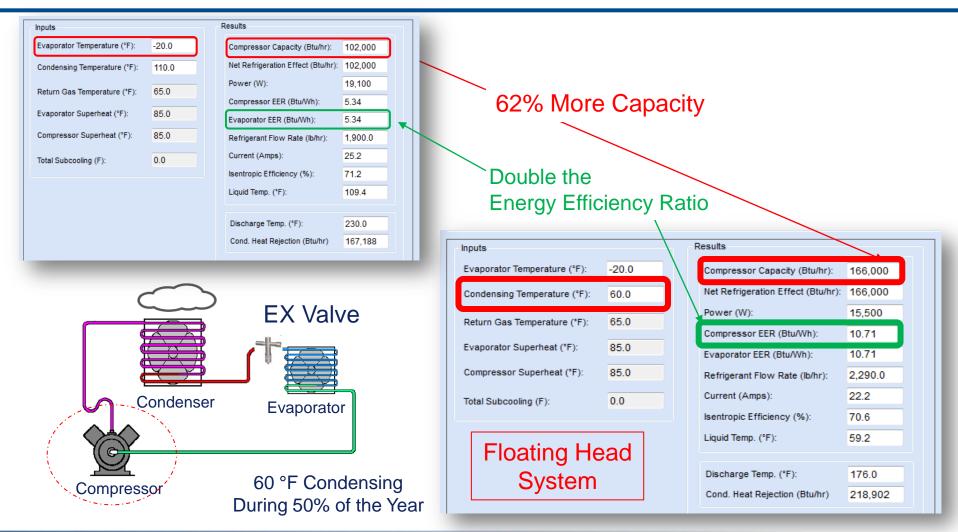
Source: Emerson Climate Technologies With AHRI 1250-2014 AWEF XLS Calculator

Medium-Temp Outdoor Calc (2 HP)


	System Input					Net Cap	acity and Sys [:]	tem Watts	Evap Fai	n Output		Defrost Output				
Ambient [F]	Qgrosss [btu/ł	n] Ecomp (W)	Econd (W)		Ambient [F]	qss [btu/h]	Ess [W]	EER [btu/w.h]	EF_comp_on [W]	EF_comp_off [W]	W-h/defrost	DF [W]	Q_DF [btu/h]			
95	17400	2005	300		95	16628	2531	6.57	226	45.2	0	0.0	0.0			
59	23600	1215	300		59	22828	1741	13.11								
35	25200	1055	300		35	24428	1581	15.45								
				Temp [F]	Bin Hour [hr]	qss [btu/h]	Ess [W]	BLH [btu/h]	BLL [btu/h]	LFH	LFL	WLH [btu/h]	WLL [btu/h]	q [btu]	E [W-hr]	BL[Btu's]
				100.4	9	15698	2650	11715	1768	0.75	0.12	11753	1903	46383.91384	8102.629	45451
				95	74	16628	2531	11640	1663	0.70	0.11	11686	1800	374630.073	59355.93	366685
				89.6	257	17558	2413	11565	1558	0.66	0.10	11617	1697	1277542.47	183884.1	1249103
				84.2	416	18488	2294	11490	1453	0.62	0.09	11548	1594	2029692.083	265717.6	1982425
				78.8	630	19418	2176	11415	1349	0.59	0.08	11478	1491	3015728.611	359370.6	2942455
				73.4	898	20348	2057	11340	1244	0.56	0.07	11408	1388	4215598.71	457449.3	4108963
				68	737	21278	1939	11266	1139	0.53	0.06	11338	1284	3391510.883	335138.5	3302351
				62.6	943	22208	1820	11191	1034	0.51	0.05	11267	1180	4251931.696	382491.1	4135924
				57.2	628	22948	1729	11116	930	0.49	0.05	11195	1077	2773058.716	231900.3	2694774
				51.8	590	23308	1693	11041	825	0.48	0.04	11122	973	2549919.818	206978.6	2475735
				46.4	677	23668	1657	10966	720	0.47	0.04	11049	869	2862399.843	225575.7	2776567
				41	576	24028	1621	10891	615	0.46	0.03	10975	765	2381299.398	182242.7	2307686
				35.6	646	24388	1585	10817	510	0.45	0.03	10902	661	2610037.751	194032.3	2526841
				30.2	534	24748	1549	10742	406	0.44	0.02	10829	557	2107368.721	152223.9	2038085
				24.8	322	25108	1513	10667	301	0.43	0.02	10755	453	1240483.533	87092.58	1198406
				19.4	305	25468	1477	10592	196	0.42	0.01	10682	348	1146329.428	78251.03	1106198
				14	246	25828	1441	10517	91	0.41	0.01	10608	244	901456.1494	59850.84	868871
				8.6	189	26188	1405	10443	-13	0.40	0.01	10535	140	674811.3852	43593.48	649615
				3.2	78	26548	1369	10368	-118	0.39	0.00	10461	36	271157.8167	17051.37	260694
				-2.2	5	26908	1333	10293	-223	0.39	0.00	10388	-68	16911.55891	1035.671	16237
													Total	38138252.56	3531338	3705306
															AWEF	10.49
													Note: DOE min	mum AWEF for this	s MT system is	7.60

- 1. Medium-Temp Outdoor R404A (Cooler)
 - 1. 2 HP Q = 17,400
 - 2. AWEF (outdoor MT +25 °F evap) = 10.49
 - 3. Min AWEF = 7.60 "PASS"

Source: Emerson Climate Technologies With AHRI 1250-2014 AWEF XLS Calculator


Floating Head Pressure vs. Fixed

Sense Sense

Source: Emerson Climate Technologies

Taking Advantage of Low Ambient

Source: Emerson Climate Technologies

Outdoor AWEF Example Condensing Unit Improvements

- I.0 HP low-temp R404A outdoor freezer unit
 - Great compressor
 - Oversized coil
 - Floating head
 - ECM fan motor all the bells and whistles!
- 2970 Btu/H, so minimum AWEF = 0.00023 (2970) + 2.73 = 3.42
- BIN analysis shows that this great unit only has AWEF of 3.06
- 12% improvement needed
- Any suggestions?

Polling Question #3

Has our webinar been helpful to you today?

- a. Very
- b. Somewhat
- c. Not very

What Questions Do You Have?

DISCLAIMER

Although all statements and information contained herein are believed to be accurate and reliable, they are presented without guarantee or warranty of any kind, expressed or implied. Information provided herein does not relieve the user from the responsibility of carrying out its own tests and experiments, and the user assumes all risks and liability for use of the information and results obtained. Statements or suggestions concerning the use of materials and processes are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe on any patents. The user should not assume that all toxicity data and safety measures are indicated herein or that other measures may not be required.

