

Controllers for Multiplexed Cabinets with Interior Stepper Driver V2.8

Copeland 1065 Big Shanty Road NW, Suite 100 Kennesaw, GA 30144 USA 770-425-2724 • 1-800-829-2724 www.copeland.com Email: ColdChain.TechnicalServices@copeland.com

1 INTRODUCTION	1
1.1 General Precautions and Warnings	1
2 BEFORE PROCEEDING	2
2.1 Software Release of XM678D	2
3 GENERAL DESCRIPTION	2
4 QUICK REFERENCE GUIDE IN RUNNING THE SELF ADAPTIVE REGULATION	3
5 INSTALLATION AND MOUNTING	4
6 WIRING DIAGRAM AND CONNECTIONS	5
6.1 Important Note	5
6.2 XM678D	
6.3 Valve Connections and Configuration	5
6.3.1 Type of Cables and Max Length	5
6.3.2 Valve Selection	5
6.3.2.1 4-Wire Valves (Bipolar)	6
6.3.2.2 5- to 6-Wire Valves (Unipolar)	6
6.4 Wiring Connection of Copeland EX3 Valve	7
6.4.1 Solenoid Valve Connection	7
6.4.2 EX3 with 24Vac Coil: Transformer Capacity	7
6.4.3 Stepper Valve Connection	7
6.4.4 EX3-C230	8
6.5 Absolute Maximum Power	8
6.6 Keyboard Display CX660	8
6.7 LAN Connection	9
6.8 Sensors for Superheat Control	9
6.9 How to Use a Single Pressure Transducer on Multiplexed Applications	9
6.10 How to Connect the Monitoring System	10
6.11 Digital Inputs	10
6.12 Analog Output	11
7 BATTERY BACK UP CONNECTION	12
7.1 Connection of XEC Supercap	12
7.2 Copeland ECP-024 Connection	
8 USER INTERFACE	13
8.1 Direct Command Interface	
8.2 Icons	
8.3 Keyboard Commands	
- 8.3.1 Single Commands	14
8.3.2 Double Commands	14
8.4 How to Modify the Air Temperature Regulation Setpoint	14
9 HOW TO PROGRAM THE PARAMETERS (PR1 AND PR2)	15
9.1 How to Have Access to Pr2 - RTC is an Option	15
9.2 How to Move a Parameter From Pr1 to Pr2 Level and Vice Versa	15

10 FAST ACCESS MENU	16
11 MULTIMASTER FUNCTION MENU (SEC)	17
11.1 Synchronized Defrost	
12 COMMISSIONING.	19
12.1 Electronic Valve Settings	
13 REGULATION FOR SUPERHEAT: SELF ADAPTIVE OR MANUAL OPERATING MODE	21
13.1 Pressure Filtering - Sub Parameter	21
13.2 General Considerations	21
13.3 Manual Operating Mode - AMS = NO	21
13.3.1 ON/OFF Temperature Regulation [CrE = n]	21
13.3.2 Continuous Temperature Regulation [CrE = Y] (With Superheat Regulation)	21
13.4 Self Adaptive Operating Mode - AMS = YES	21
13.5 Minimum Stable Superheat Search - AMS = YES, ATU = YES	21
13.6 Valve Capacity Reducing - MNF Parameter	22
13.7 Auto Zero Procedure (Go Home Functions)	
14 DISPLAY MESSAGES	23
14.1 Alarm Recovery	
15 USE OF THE PROGRAMMING HOT KEY	25
15.1 Download (From the Hotkey to the Device)	
15.2 Upload (From the Device to the Hotkey)	
16 CONTROLLING LOADS	26
16.1 Cooling Output	
16.2 Standard Regulation and Continuous Regulation	
16.2.1 Standard regulation: [CrE = n]	
16.2.2 Continuous regulation: [CrE = Y]	
16.2.3 Evaporator valves: [CrE = EUP]	
16.3 Defrost	
16.3.1 Defrost starting	
16.3.2 Defrost Ending	
16.4 Fans	27
16.4.1 Control With Relay	
16.4.2 Control With Analog Output (If Present)	
16.5 Anti-Sweat Heaters	
17 IECHNICAL DATA	29
18 DEFAULT PARAMETER MAP	31

Introduction 1

1.1 **General Precautions and Warnings**

Please read the following safety precautions and warnings before using this manual:

- This manual is part of the product and should be kept near the device for easy and quick reference. · The device should not be used for purposes different from those described in this manual. It cannot be used as a safety device. **A** CAUTION
 - Check the application limits before proceeding.
 - · Copeland reserves the right to change the composition of its products, even without notice, ensuring the same unchanged functionality.

SAFETY PRECAUTIONS AND WARNINGS!

- Check that the supply voltage is correct before connecting the device.
- · Do not expose to water or moisture: use the controller only within the operating limits and avoid sudden temperature changes with high atmospheric humidity to prevent condensation from forming.
- Warning! Disconnect all electrical connections before performing any kind of maintenance.
- Fit the probe where it is not accessible by the end user. The device must not be opened.
- In case of failure or faulty operation, send the device back to the distributor or to Copeland (see address) with a detailed description of the fault.
- · Verify the maximum current that can be applied to each relay (see Section 17, Technical Data).
- Ensure that the wires for probes, loads, and the power supply are separated and far enough from each other without crossing or intertwining.

2 Before Proceeding

2.1 Software Release of XM678D

1. Look at the software release of XM678D printed on the label of the controller.

Figure 2-1 - Software Release of XM678D

2. If the software release is 2.8, proceed with this manual; otherwise contact Copeland for the correct manual.

3 General Description

The XM678D controller is a microprocessor based controller for multiplexed cabinets suitable for applications on medium or low temperature. It can be inserted in a proprietary Local Area Network (LAN) with up to eight (8) different sections that can operate, depending on the programming, as standalone controllers or by following the commands coming from the other sections. The XM678D controller is provided with six (6) relay outputs to control the solenoid valve, defrost that can be either electrical or hot gas, evaporator fans, lights, an auxiliary output and an alarm output, and with the stepper valve driver. It also has six (6) probe inputs: for temperature control, defrost end temperature control, display and the fourth can be used for application with virtual probe or for inlet/outlet air temperature measurement. The fifth and sixth probe inputs are used to evaluate and control the superheat. The XM678D is also equipped with three (3) free contact digital inputs that are fully configurable by parameters.

The Hotkey connector allows simple programming of the controller. The optional direct serial output RS485 that is MODBUS compatible permits simple XWEB interfacing. Optionally, an RTC is available. Depending on the model, the Hotkey connector can be used to connect the X-REP display.

4 Quick Reference Guide in Running the Self Adaptive Regulation

 After wiring the XM678D; configure the type of valve, bipolar or unipolar, via tEu (Default tEu = bP: bipolar) and tEP (Default tEP =0) parameters or through the manual settings. See Section 6.3, Valve Connections and Configuration for details.

NOTE For Alco EX4, EX5, EX6 tEP = 11 For EX3: tEP = 12

2. Set the proper gas via Fty parameter, among the following values:

Table 4-1 - XM678D Gas Table

LABEL	REFRIGERANT	OPERATING RANGE
R22	r22	-58 to 120°F/-50 to 60°C
134	r134A	-58 to 120°F/-50 to 60°C
290	r290 - Propane	-58 to 120°F/-50 to 60°C
404	r404A	-94 to 120°F/-70 to 60°C
47A	r407A	-58 to 120°F/-50 to 60°C
47C	r407C	-58 to 120°F/-50 to 60°C
47F	r4107F	-58 to 120°F/-50 to 60°C
410	r410A	-58 to 120°F/-50 to 60°C
448	r448A	-69 to 120°F/-45 to 60°C
449	r449A	-69 to 120°F/-45 to 60°C
450	r450A	-69 to 120°F/-45 to 60°C
507	r507	-94 to 120°F/-70 to 60°C
513	r513A	-69 to 120°F/-45 to 60°C
CO ₂	r744 - CO ₂	-58 to 120°F/-50 to 60°C

Preset gas is R404A.

- 3. Configure the probes:
 - Regulation and evaporator probes are preset as NTC. If another kind of sensors is used, it can be set to P1c and P2c parameters.
 - Superheat evaporator outlet probe is preset as Pt1000, if another kind of sensor is used, it can be set to P6c parameter.
 - The PP11 (-0.5 to 11 bar) is preset as pressure probe. It operates at relative pressure (Pru = rE). If you are using a ratiometric transducer, set P5c = 0-5. Use parameters PA4 and P20 to set the range.

NOTE

Check the pressure gauge reading with the value of dPP. Press the up arrow once to enter the Fast Access Menu. If OK, proceed; otherwise resolve the situation before acting on parameter Pru, PA4 and P20.

4. Set the parameters for self adaptive regulation of superheat.

The parameters Pb (regulation band) and Int (integral time) are automatically calculated by the controller.

- Set CrE = no, this disables the continuous regulation of the temperature. Default is CrE = no.
- Set **SSH**, superheating setpoint. A value between 4 and 8 is acceptable. Default is SSH=8-.
- Set AMS = y, this starts the self adaptive regulation. Default is AMS = y.
- Set ATU = y, this starts the search of the lowest stable superheat. Default is ATU = y. This function reduces the setpoint automatically in order to optimize the use of the evaporator, and keeping the superheating regulation stable at the same time. The minimum allowed SH setpoint is LSH+2°C.
- Set LSH, low superheating limit. A value between 2 to 4 is acceptable. Default is LSH = 3.
- Set SUb, pressure filter. Default is SUb = 10. The value can increase up to 20 if the pressure variation respond too fast.
- 5. Set the parameters for the temperature regulation.
 - Set the temperature setpoint. Default is -5°C.
 - Set the differential HY Default is 2°C.
 - If the capacity of the valve is higher than requested, it can be reduced by the parameter. **MNF** (default is 100). A proper setting of **MnF** will reduce the time that the algorithm takes to reach the stability. MNF value does not affect the bandwidth.

The XM678D controller can function without any user interface, but normal application is with the CX660 keyboard.

Figure 5-1 - XM678D Installation and Mounting

The CX660 keyboard should be mounted on a vertical panel, in a 29 x 71 mm hole, and secured using the special bracket supplied (**Figure 5-1**).

The temperature range allowed for correct operation is 0 to 60°C. Avoid places subject to strong vibrations, corrosive gases, excessive dirt or humidity. The same recommendations apply to probes. Allow air to circulate through the cooling holes.

Figure 5-2 - XM678D Dimensions

6 Wiring Diagram and Connections

6.1 Important Note

The XM device is supplied with a disconnectable terminal block to connect cables with a cross-section of up to 1.6 mm² for all low voltage connections: RS485, LAN, probes, digital inputs, and keyboard. Other inputs, power supply and relay connections are provided with a screw terminal block or Faston connection (5.0 mm). Heat-resistant cables have to be used.

Before connecting the cables, verify that the power supply complies with the controller's requirements. Separate the probe cables from the power supply cables, outputs and power connections. Do not exceed the maximum current allowed on each relay. In case of heavier loads, use a suitable external relay. *Maximum current allowed for all loads is 16A*.

The probes should be mounted with the bulb upwards to prevent damages due to casual liquid infiltration. It is recommended to place the thermostat probe away from air streams to measure the average room temperature correctly. Place the defrost termination probe among the evaporator fans in the coldest place (where most ice is formed) and far from heaters or from the warmest place during defrost to prevent premature defrost termination.

6.2 XM678D

Figure 6-1 - XM678D Wiring and Connections

6.3 Valve Connections and Configuration

6.3.1 Type of Cables and Max Length

To connect the value to the controller, use only the shielded cables with section greater than or equal to 0.823 mm² (AWG18). A twisted shielded cable with the above specification is suggested. Don't connect the shield to the ground, keep it floating. The maximum distance between an XM controller and a value <u>must not</u> exceed 10 meters.

6.3.2 Valve Selection

To avoid possible problems, before connecting the valve configure the driver by making the right changes on the parameters.

- a. Select the kind of motor (tEU parameter)
- b. Check if the valve is present in the tEP parameter shown in Table 6-1.

NOTE In any case, the unique and valid reference has to be considered the data sheet made by valve manufacturer. Copelands cannot be considered responsible in case of valve damage due to incorrect settings.

Table 6-1 - tEP Parameter Table

tEP	Model	LSt (steps*10)	uSt (steps*10)	CPP (mA*10)	CHd (mA*10)	Sr (step/s)	tEU (bip/ unip)	HSF (Half/ Full)
0	Manual settings	Par	Par	Par	Par	Par	Par	Par
1	Danfoss ETS-25/50	7	262	10	10	300	bP	FUL
2	Danfoss ETS-100	10	353	10	10	300	bP	FUL
3	Danfoss ETS-250/400	11	381	10	10	300	bP	FUL
4	Sporlan SEI.5 to 11	0	159	12	0	200	bP	FUL
5	Sporlan SER 1.5 to 20	0	159	12	0	200	bP	FUL
6	Sporlan SEI 30	0	319	16	0	200	bP	FUL
7	Sporlan SER(I) G,J,K	0	250	12	0	200	bP	FUL
8	Sporlan SEI-50	0	638	12	0	200	bP	FUL
9	Sporlan SEH(I)-100	0	638	12	0	200	bP	FUL
10	Sporlan SEH(I)-175	0	638	12	0	200	bP	FUL
11	Copeland EX4/EX5/EX6	5	75	50	10	500	bP	FUL
12	Copeland EX3	2	33	0	0	0	uP	HAF

If your valve is listed in **Table 6-1**, select the valve using the **tEP** parameter. This way, you can be sure of the correct configuration.

For connection modes of valves of different manufacturers, refer to Table 6-2 and Table 6-3.

6.3.2.1 4-Wire Valves (Bipolar)

Table 6-2 - 4-Wire Valves (Bipolar)

Connection Numbering	ALCO EX4/5/6/7/8	SPORLAN SEI-SEH-SER	DANFOSS ETS
45	BLUE	WHITE	BLACK
46	BROWN	BLACK	WHITE
47	BLACK	RED	RED
48	WHITE	GREEN	GREEN

6.3.2.2 5- to 6-Wire Valves (Unipolar)

Table 6-3 - 5- to 6-Wire Valves (Unipolar)

Connection numbering	SPORLAN	SAGINOMIYA
45	ORANGE	ORANGE
46	RED	RED
47	YELLOW	YELLOW
48	BLACK	BLACK
49 - Common	GRAY	GRAY

NOTE After making the connection, switch the XM controller OFF and ON to make sure that the valve is positioned properly.

6.4 Wiring Connection of Copeland EX3 Valve

XM678D and EX3 Connection

The EX3 valve integrates a solenoid valve with positive shut off on the top and a stepper valve.

6.4.1 Solenoid Valve Connection

- a. Verify the coil voltage of solenoid valve and make sure it's the same voltage of relay output.
- b. Set **oA1 or oA6 = E3r (solenoid coil of EX**3). Any other setting of the oA1 or oA6 parameter can damage the solenoid valve.
- c. With **oA1 = E3r** connect the solenoid value to the terminals 11-12.
- d. With **oA6 = E3r** connect the solenoid valve to the terminals 17-18.

The solenoid coil will be energized every time the temperature regulation is on and de-energized when the temperature regulation is off and during the standby of the controller.

6.4.2 EX3 with 24Vac Coil: Transformer Capacity

When the coil of the EX3 is at 24Vac and a unique transformer is used to supply both the controller and the coil of the valve, a 40VCA transformer *must be* used like TF40D. Any transformer with lower capacity can damage the valve or the controller.

6.4.3 Stepper Valve Connection

The EX3 unipolar valve has to be connected to the following terminals listed in Table 6-4.

Table 6-4 - EX3 Unipolar Valve Terminals

XM678D	EX3
Terminal 49	Grey wire
Terminal 48	Blue wire
Terminal 47	Black wire
Terminal 46	Brown wire
Terminal 45	White wire

6.4.4 EX3-C230

E.I connection of EX3 with oA1 = E3r and 230V coil of solenoid valve.

Figure 6-2 - EX3-C230 Connection

6.5 Absolute Maximum Power

XM678D is capable of driving a wide range of stepper valves. **Table 6-5** lists the maximum amount of current that the actuator can supply to the stepper wiring. The 640-0041 or 640-0040 (24V out, 20VA min) transformer should be used.

NOTE

The electrical power absorption of the valve is not related to the valve's refrigeration power. Before using the actuator, please read the technical manual of the valve supplied by the manufacturer and check the maximum current used to drive the valve; verify that the values are lower than those indicated in **Table 6-5**.

Table 6-5 - Absolute Maximum Power

VALVE	BIPOLAR VALVES (4 wires)	Max Current 0.9A
TYPE	UNIPOLAR VALVES (5-6 wires)	Max Current 0.33A

6.6 Keyboard Display CX660

The XM678D controller can also operate without the keyboard.

Polarity:

- Terminal [34] [-]
- Terminal [35] [+]

Use twisted shielded cable AWG 18 or less in case of long distance.

Max Distance: 30m

Figure 6-3 - XM678D Keyboard Display

6.7 LAN Connection

To create a LAN connection and to a perform synchronized defrost (also called master-slave functioning):

- 1. Connect a shielded cable between terminals 38[-] and 39[+] for a maximum of 8 sections.
- The Adr parameter is the number to identify each electronic board. Address duplication is not permitted, in this case the synchronized defrost and the communication with monitoring system is not guaranteed (the Adr is also the MODBUS address). See Figure 6-4 for an example of a properly configured LAN connection:

Figure 6-4 - LAN Connection

If the LAN is connected properly, the green LED will be ON. If the LAN is <u>not</u> connected properly, a blinking LED will display. The max distance allowed is 30m.

6.8 Sensors for Superheat Control

Temperature probe: Pb6 Terminals 19-20 without any polarity.

Select the kind of sensor with the **P6C** parameter.

Pressure transducer: Pb5 Terminals

[21] = signal input

[22] = power supply for 4 to 20mA transducer

[**20**] = GND

[23] = +5VDC power supply for ratiometric pressure transducer

Select the transducer configuration with the **P5C** parameter.

Figure 6-5 - Sensors for Superheat Control

6.9 How to Use a Single Pressure Transducer on Multiplexed Applications

Figure 6-6 - Pressure Transducer on Multiplexed Applications

A working LAN connection is required (green LED lit on all XM678D boards of the same LAN). Connect and configure the pressure transducer only on one XM678D of the network. Afterwards, the pressure value read by that single transducer will be used by each device connected to the same LAN.

To read the pressure value, press the up arrow button to access the fast selection menu and read the value of the following parameters:

- dPP measured pressure (only on the master device)
- **dP5** temperature value obtained from the pressure value (temperature conversion)
- **rPP** pressure value read from remote location (only for slave devices)

Examples of error messages:

- dPP = Err -> the local transducer read an incorrect value; the pressure value is out of range of the pressure transducer or the P5C parameter is incorrect. Check if any of the above causes the error, otherwise replace the transducer.
- rPF -> there is an error in the remote pressure transducer. Check the status of the board (GREEN LED); if the LED is OFF, then the LAN is not functioning, otherwise, check the remote pressure transducer.

Last Checks about the Superheat:

On the fast access menu:

- **dPP** the value read by the gauge.
- **dP6** the value read by the temperature probe, the temperature of the gas on the evaporator outlet.
- **SH** the value of the superheat. The nA or err message means that the superheat cannot be read at the moment and the value is not available.

6.10 How to Connect the Monitoring System

Figure 6-7 - Connecting the Monitoring System

- Connect through terminals **36** [-] and **37** [+].
- Use a shielded twisted cable (for example, Belden 8762 or CAT 5 cable).
- The maximum allowable distance is 1 kilometer.
- Do not connect the shield wire to the earth or ground terminals of the device. Use insulation tapes to avoid accidental contacts.

Only one controller for each LAN should be connected to the RS485 connection.

Figure 6-8 - Connecting Monitoring Systems

The **Adr** parameter is the number that identifies each electronic board. Address duplication is not permitted; in this case, synchronized defrost and the communication with the monitoring system are not guaranteed (the **Adr** is also the MODBUS address).

6.11 Digital Inputs

Figure 6-9 - Digital Inputs

- Terminals [**30**] through [**33**] are all free of voltage.
- Use a shielded cable for distances higher than one meter.

For each digital input, configure the parameters: **i1P** (polarity of activation), **i1F** (function of the input), and **i1d** (delay of signaling).

The i1P can be set to: cL = active when closed; or oP = active when opened.

The i1F parameter can be set to: EAL = external alarm, Bal =serious lock alarm, PAL=pressure switch alarm, dor=door switch, dEF=external defrost, AUS= auxiliary activation command, LiG= light activation, OnF= board On/OFF, FHU=do not use this configuration, ES=day/night, or HdY=do not use this configuration.

The **i1d** parameter is for the delay of activation.

For the other digital inputs, same set of parameters is present: **i2P**, **i2F**, **i2d**, **i3P**, **i3F**, **i3d**.

6.12 Analog Output

Figure 6-10 - Analog Output

- Can be set between 4 to 20mA and 0 to 10VDC.
- Use a CABCJ15 cable for connections.

The analog output is located near the terminal [**39**] on a twopin connector. The analog output can be used to control antisweat heaters using a chopped phased controller, XRPW500 (500 watt) or family, XVxxD or XVxxK.

7 Battery Back Up Connection

7.1 Connection of XEC Supercap

XEC Supercap is designed to be used with Dixell products (XM678D, XEV, IEV, and others); compatibility with Dixell devices has to be verified in the user manual/technical sheet of the device. If problems occur, contact Dixell Service department at 770-425-2724.

XEC Supercap and XM678D must be powered by two different transformers; failure on observance of this rule may result to damage to the XEC Supercap and/or to the connected XM678D.

Wiring Connection

Table 7-1 - XM678D and XEC Wiring Connection

XM678D	XEC
Terminal 61 (+)	Terminal 4 (12Vdc)
Terminal 62 (-)	Terminal 3 (gnd)

Figure 7-1 - XM678D - XEC Supercap Connection

7.2 Copeland ECP-024 Connection

The Copeland ECP-024 rechargeable accumulator can be connected to the XM678D to close the stepper valve in case of power interruption. Please refer to the ECP-024 manuals for the terms and conditions of use and limitations.

Wiring Connection

Table 7-2 - XM678D and XEC Wiring Connection

XM678D	ECP-024
Terminal 61 (+)	Terminal +
Terminal 62 (-)	Terminal -

8 User Interface

8.1 Direct Command Interface

Figure 8-1 - XM678D Front Panel

8.2 Icons

Cooling Output					
Light	×.	*	ss	Fan	The output is activated when the icon is ON. A delay is present when the
Defrost		AUX	Auxiliary relay		icon is blinking.
Energy Saving	*)	얳	Multimaster enabled Clock/time		MEASUREMENT UNIT °C , Bar , and \textcircled{O} (time) are ON depending on the selection.
Generic alarm	((!))	Ð			
DURING PROGRAMMING: The measurement units of temperature and pressure will blink.					

Table 8-1- Icons

8.3 Keyboard Commands

8.3.1 Single Commands

- LIGHT relay: Press the light button
- AUX relay: Press the down arrow button
- Manual defrost: Press the defrost button for three (3) seconds
- **ON/OFF**: Press the ON/OFF button for three (3) seconds (if the function is enabled)
- Energy Saving: Press the ON/OFF button for three (3) seconds (if the function is enabled)

8.3.2 Double Commands

$\checkmark_{+} \diamondsuit$	Press for three (3) seconds to lock (Pon) or unlock (PoF) the keyboard.
SET + A	Press both keys to exit the programming mode or from a menu; when on submenus EEV , pressing these keys return you to the previous level.
SET + 🏹	Press both keys for three (3) seconds to enter the first level of the programming mode.

Table 8-2 - Double Commands

8.4 How to Modify the Air Temperature Regulation Setpoint

The thermostat setpoint is the value used to regulate the air temperature. The regulation output is controlled by the electronic valve or the relay.

BEGIN SET		Press the SET key for three (3) seconds (the measurement units will blink).
Value Modification		Use the up arrow and down arrow keys to change the LS and US parameters value.
EXIT SET		Press the SET key to save the value (the value will blink for two (2) seconds).

Table 8-3 - Modifying the Air Temperature Regulation Setpoint

Wait for 10 seconds to exit. Press and release the **SET** button to display the air temperature setpoint (value displays for 60 seconds).

9 How to Program the Parameters (Pr1 and Pr2)

The device has two programming levels: **Pr1** (direct access) and **Pr2** (password-protected, access for expert users).

ACCESS to Pr1	SET + 🏹	Press for three (3) seconds to enter the first programming level (Pr1).
Select item	≯ d	Press the up arrow or down arrow key to select the parameter or submenu.
Show value	SET	Press the SET button.
Modify	ך א מ	Press the up arrow or down arrow key to modify the value.
Confirm and store	SET	Press SET (the value will blink for three (3) seconds and then display the next parameter).
EXIT	SET + A	Press to exit the programming mode, or wait for 10 seconds to exit.

Table 9-1 - Programming the Parameters (Pr1 and Pr2)

9.1 How to Have Access to Pr2 - RTC is an Option

To enter **Pr2** programming menu:

- 1. Press **SET**+ down arrow keys for three (3) seconds to enter **Pr1** menu (the first label will display).
- 2. Press down arrow until the **Pr2** label displays and then press **SET**.
- 3. A blinking "PAS" label displays. Wait for a few seconds.
- When a blinking "0 -" displays, enter the password [321] by pressing the up arrow and down arrow keys. Press SET to save.

GENERAL STRUCTURE: The first two items, rtC and EEV, are related to the submenus of the other parameters.

- Pressing the **SET** + up arrow keys on the EEV submenu returns you to the parameter list.
- Pressing the **SET** + up arrow keys on the parameter list exits the screen.

9.2 How to Move a Parameter From Pr1 to Pr2 Level and Vice Versa

Enter the Pr2 level. Select the desired parameter then press the **SET**+ down arrow keys. If the LED on the left-hand side of the screen is ON, it means that the parameter is present in Pr1 level; if the LED is OFF, it means that the parameter is not present in Pr1 (Only Pr2).

10 Fast Access Menu

The Fast Access menu contains the list of probes and values that are automatically emptied by the board such as the superheat and percentage of valve opening. The values: **nP** or **noP** stands for *probe not present* or *value not emptied*, and **Err** means the value is out of range, or the probe is damaged, not connected or configured incorrectly.

ENTERING THE FAST ACCESS MENU	A	Press and release the up arrow key. The duration of the menu in case of inactivity is about 3 minutes. Depending on the configuration of the board, the values display.
To select an entry, press the ♠ or ♥, then press SET to view the value or to move to the next value.	An Value of analog out SH Value of superheat. oPP Percentage of value dP1 (Pb1) Value read by dP2 (Pb2) Value read by dP3 (Pb3) Value read by dP4 (Pb4) Value read by dP5 (Pb5) Temperature dP6 (Pb6) Value read by dPP Pressure value read rPP Virtual pressure prof L°t Minimum room temp H°t Maximum room temp H°t Virtual probe for roo dPf Virtual probe for de dPF Virtual probe for de dPF Virtual probe for far rSE Real thermoregulat dynamic setpoint if the f	but nA= not Available e opening / probe 1 / probe 2 / probe 3 / probe 4 read by probe 5 or value obtained from pressure transducer / probe 6 d by (Pb5) transducer be, only on slave perature on temperature regulation [rPA and rPb] efrost management [dPA] in management [FPA] ion setpoint: the value includes the sum of SET, HES and/or the unctions are
EXIT	SET + A	Press together or wait the time out for 60 seconds.

Table 10-1 - Fast Access Menu

11 Multimaster Function Menu (SEC)

The function "section" SEC is enabled when the 📽 icon is lit. It allows entering in the remote programming mode from a keyboard not physically connected to the board through the LAN functionality.

Figure 11-1 - Multimaster Function Menu (SEC)

Table 11-1 - Multimaster Function Menu Action Buttons

 (\star) The devices on the LAN are indexed by using the Adr parameter (in ascending order).

Action Button or display		or display	Notes	
Enter menu	iter menu 🛆		Press the up arrow key for about three (3) seconds, the 😤 icon will be ON.	
Waiting for action	SEC		The menu to change the section will be entered. SEC label will be displayed.	
Enter section list	SET		Press SET to confirm. The following list will be available to select the proper network function.	
Select proper function		LOC ALL SE1 SEn SE8	To gain access only to the local device. To gain access to all the devices connected to the LAN. To gain access to the device with 1st Adr (*) To gain access to the device with 8th Adr (*)	
Confirm SET		ET	Select and confirm an entry by pressing SET button.	
Exit menu SET + 🛆		·+A	Press SET and up arrow together or wait about 10 seconds.	

EXAMPLES:

- 1. To modify the same parameter values in all the devices connected to the LAN: enter the multimaster menu. Select and confirm **ALL**. Exit from the multimaster menu. Enter the programming menu and change the required parameter values. The new values will be changed on all devices connected to the LAN.
- To modify a parameter value in the device with [Adr = 35]: find the relevant indexed section (the one linked to [Adr = 35]). Enter the multimaster menu. Select and confirm this section from the multimaster menu. Exit from the multimaster menu. Enter the programming menu and change the required parameter value.
- 3. If the alarm **nod** is present: enter the multimaster menu. Select and confirm the **LOC** section. Exit from multimaster menu.

A CAUTION At the end of programming, select the LOC section to switch OFF the $rac{1}{2}$ icon.

11.1 Synchronized Defrost

The synchronized defrost allows multiple defrosts to be managed from different boards connected through the LAN connection. In this way, the boards can perform simultaneous defrosts with the possibility to end them in a synchronized manner.

BEGIN	SET + 🏷	Press for three (3) seconds, the EEU or other will be showed. The measurement unit blinks.	
Find Adr	\triangleleft	Press the down arrow key several times to find the Adr parameter, then press SET.	
Modify Adr	or	Set the value of Adr parameter, then press SET to confirm the parameter.	
EXIT	SET + A	Press both keys to exit from menu or wait for about 10 seconds.	

Table 11-2 - Synchronized Defrost Keys

The LSn and LAn parameter are used only to show the actual settings (read only). See Figure 11-2 for example of configuration:

Figure 11-2 - Configuration Example

Table 11-3 - Multimaster Defrost Example

Par	Unit A	Unit B	Unit C
Adr	n	N + 1	N + 2
ldF	9 hours safety	9 hours safety	9 hours safety
MdF	45 min safety	45 min safety	45 min safety
dtE	12°C safety	12°C safety	12°C safety
Ld1	06:00 1°	06:00 1°	06:00 1°
Ld2	14:00 2°	14:00 2°	14:00 2°
Ld3	22:00 3°	22:00 3°	22:00 3°

12 Commissioning

12.1 Electronic Valve Settings

The following parameters needs to be checked:

[1] Superheat temperature probe: NtC, PtC, Pt1000 with parameter P6C. The sensor has to be fixed at the end of the evaporator.

[2] Pressure transducer: [4 to 20mA] or ratiometric P5C=420 or 5Vr with parameter P5C.

[3] Range of measurement: Check the conversion parameters, PA4 and P20, that are related to the transducer.

TRANSDUCER: For [-0.5/7Bar] or [0.5/8Bar abs], the correct setup is relative pressure with **PA4**=-0.5 and **P20**=7.0. For [0.5/12Bar abs], the correct setup is relative pressure with **PA4**=-0.5 and **P20**=11.00.

Example or virtual pressure with unique [4 to 20mA] or [0-5V] transducer:

Table 12-1 - Example or virtual pressure with unique 4..20mA or 0-5V transducer

Parameter	XM6x8D_1 w/o transducer	XM6x8D_2 + with transducer	XM6x8D_3 + w/o transducer
Adr	n	n+1	n+2
LPP	LPP=n	LPP=Y	LPP=n
P5C	LAN or probe not connected	P5C=420 or 0-5V	LAN or probe not connected
PA4	not used	-0.5 bar	not used
P20	not used	7.0 bar	not used

[4] From the EEV submenu: Select the correct kind of gas with the FTy parameter.

[5] Use the following parameters to set up the correct valve drive (based on the valve data sheet of the manufacturer):

tEU	Type of stepper motor: (uP- bP) Allows selection of the kind of valve. uP= 5- 6 wires unipolar valves, bP= 4 wires bipolar valves
	Changing this parameter will require a valve restart.
tEP	Predefined valve selection: (0 to 10) If tEP=0, the user has to modify all the configuration parameters to use the valve. If tEP is not equal to 0, the device performs a fast configuration of the following parameters: LSt, uSt, Sr, CPP, CHd. To select the right number, please read Table 6-1.
	If tEP is not equal to 0, previous configuration of the LSt, uSt, Sr, CPP, and CHd parameters is overwritten.
HFS	Kind of motor movement: (HAF; FUL) HAF= half step. Use this setting for the unipolar valve.
	FUL= full step. Use this setting for the bipolar valve.
LSt	Minimum number of steps: (0 to USt) Allows selection of the minimum number of steps. At this number of steps, the valve should be closed. Read the manufacturer's data sheet to set this parameter correctly.Configure the value of this parameter within the allowed range of functioning.
	Changing this parameter will require a valve restart. When the programming mode ends, the controller will automatically restart.
USt	Maximum number of steps: (LSt to 800 * 10) Allows the user to select the maximum number of steps. At this number of steps, the valve should be opened completely. Read the manufacturer's data sheet to set this parameter correctly. Configure the value of this parameter within the allowed range of functioning.

	Changing this parameter will require a valve restart. When the programming mode ends, the controller will automatically restart.		
Est	Est Extra step during closing phase: (0 to 255 (* 10)) it sets the number of extra steps the controller performs, when the valve is closed at start up, and during the pauses of regulation, to force the closure of the valve.		
NOTE	To set the ESt, the following steps has to be done: 1 Set the kind of value by the parameter tEP. This pre-set the parameters related to the value		
NOTE	 Set the kind of value by the parameter ten. This pre-set the parameters related to the value Set the right value of ESt. 		
Sr	Step rate: (10 to 600 step/sec) The maximum speed to change step without losing precision (losing steps). It is recommended to set this parameter below the maximum speed.		
СРР	Current per phase (only for bipolar valves): (0 to 100+10mA) The maximum current per phase used to drive the valve. (Used only with bipolar valves)		
CHd Holding current per phase (only for bipolar valves): (0 to 100 * 10mA) The current per phase when the valve is stopped for more than 4 minutes. (Used only with bipolar valves):			

13.1 Pressure Filtering - Sub Parameter

For optimal SH regulation, use a filtered value of pressure. This can be accomplished by using the parameter Sub.

Suggested values:

- From 1-5 evaporators for each racks: Sub = 15
- From 6-30 evaporators for each racks: Sub = 10
- More than 30 evaporators for each racks: Sub =5

13.2 General Considerations

The controller can regulate the superheat in manual or self adaptive mode, according to the value of the parameter **AMS**, **auto-tuning enabling**.

- With AMS = n: the normal SH regulation is performed.
- With AMS = y: the self adaptive SH regulation is performed.

13.3 Manual Operating Mode -AMS = NO

The temperature and SH regulation can be performed in two ways, according to the value of the parameter CrE: on/off or continuous. See the Standard temperature regulation in details below.

13.3.1 ON/OFF Temperature Regulation [CrE = n]

- 1. Temperature regulation is ON/OFF and it depends on the Setpoint and HY parameter (differential). Valve is closed when the temperature reaches the setpoint and open when the temperature is higher than setpoint + differential.
- 2. The superheat is regulated to be closer ot its setpoint.
- 3. With more pauses normally also the humidity is larger.
- 4. Regulation pauses can be realized using the **Sti** and **Std** parameters (during these pauses the valve is closed).

13.3.2 Continuous Temperature Regulation [CrE = Y] (With Superheat Regulation)

- 1. The **HY** parameter becomes the temperature band for PI control. A good default value is **6°C**.
- 2. The regulation of injection is continuous and the cooling output is always ON. The 💥 icon is always ON except for the defrost phase.
- 3. The superheat is regulated following the **SSH** parameter.
- 4. Regulation pauses can be realized using **Sti** and **Std** parameters (during these pauses the valve is closed).
- 5. Increasing the **Int** integral time can decrease the speed of reaction of the regulator on the **HY** band.

13.4 Self Adaptive Operating Mode -AMS = YES

Auto-adaptive means to find and maintain the condition of the lowest super heating according to the load and environmental conditions present in a given time on the evaporator.

The parameter **AMS** enables the self adaptive mode in the superheat regulation.

In this functioning the values of **Pb** and **inC** parameter are automatically set by the controller according to the kind of applications and the response of the system.

With the AMS = YES, CrE must be set to NO.

The **self adaptive algorithm** does not affect the functions related to the forced opening of the valve in special situations, such as:

• Forced opening of the valve at start of regulation, parameter SFd (percentage) and SFd (time).

13.5 Minimum Stable Superheat Search - AMS = YES, ATU = YES

With the parameter **ATU**, the minimum stable superheat search function is enabled.

With ATU = yES, controllers start searching the minimum stable value for the SH. The minimum admitted value in any case is LSH + 2°C (4°F). Take it in consideration, before setting LSH value.

13.6 Valve Capacity Reducing - MNF Parameter

The parameter MnF reduce the capacity of the valve, to fine tune the valve to the evaporator.

The regulation band is not affected from the modification of the MnF parameter.

See the figure below (Figure 13-1) for the behavior of the capacity of the valve, when the MnF parameter is adjusted.

Figure 13-1 - Capacity of Valve in Adjusted MnF Parameter

NOTE During the soft start phase (oPE, SFd), MnF parameter is not taken in consideration and the capacity of the valve is set by the parameters oPE and oPd, respectively.

13.7 Auto Zero Procedure (Go Home Functions)

To prevent any possible wrong positions caused by a long period of working for the step valve without closing, the controller after **gTH** hours, as soon as the opening open percentage is under 20%, will force a "go home" procedure:

- 1. Close the valve at max speed until the complete closure is reached.
- 2. Perform extra steps (Est).
- 3. Re-open to the requested regulation position.

This position is valid for all the valves and has to be done at set speed for each valve.

14 Display Messages

Table 14-1 - Display Messages

	Display	Causes	Notes			
	KEYBOARD					
1	nod	No display: the keyboard is trying to work with another board that is not working or not present	Press for three (3) sec the up arrow, enter the SEC menu and select LOC entry.			
2	Pon	Keyboard is unlocked				
3	PoF	Keyboard is locked				
4	rSt	Alarm reset	Alarm output deactivated.			
5	noP, nP nA	Not present (configuration) Not available (evaluation)				
6	noL	The keyboard is not able to communicate with the XM668D or XM678D	Verify the connection or call the Copeland Technical Service.			
		ALARM FROM PROBE INPUT				
	P1 P2 P3	Sensor brake down, value out of range or sensor incorrectly configured P1C , P2C to P6C .	P1: the cooling output works with Con and COF,			
7	P4 P5	PPF can be showed by slaves of pressure that don't receive the value of pressure.	With defrost probe on error the defrost is performed only at interval.			
	P6 PPF CPF	CPF is showed when the remote probe 4 is not working.	For P5 , P6 and PPF : the percentage of the valve opening is fixed at PEO value.			
		TEMPERATURE ALARM				
8	HA	Temperature alarm from parameter ALU on probe rAL.	Outputs unchanged.			
9	LA	Temperature alarm from parameter ALL on probe rAL.	Outputs unchanged.			
10	HAd	Defrost high temperature.	Outputs unchanged.			
11	LAd	Defrost low temperature.	Outputs unchanged.			
12	FAd	Fan low temperature.	Outputs unchanged.			
13	HAF	Fan high temperature.	Outputs unchanged.			
		DIGITAL INPUT ALARM				
14	dA	Door open alarm from input i1F, i2F or i3F = after delay d1d , d2d or d3d .	Cooling relay and fan follow the odc parameter. Cooling restart as specified on rrd parameter.			
15	EA	Generic alarm from digital input i1F, i2F, i3F = EAL .				
16	CA	Severe alarm of regulation lock from digital input i1F , i2F , i3F = bAL .	Regulation output OFF.			
17	PAL	Pressure switch lock i1F , i2F o i3F = PAL .	All the outputs are OFF.			
		ELECTRONIC VALVE ALARM				
18	LOP	Minimum operating pressure threshold from LOP parameter.	The valve output increases its opening of dML quantity every second.			

Table 14-1 - Display Messages

	Display	Causes	Notes
19	MOP	Maximum operating pressure threshold from MOP parameter.	The valve output decreases its opening of dML quantity every second.
20	LSH	Low superheating from LSH parameter and SHd delay.	The valve will be closed; the alarm will be showed after SHd delay.
21	HSH	High superheating from HSH parameter and SHd delay.	Only display.
		OTHERS	
22	EE	EEPROM serious problem.	Output OFF.
23	Err	Error with upload/download parameters.	Repeat the operation.
24	End	Parameters have been correctly transferred.	

14.1 Alarm Recovery

Probe alarms P1, P2, P3, and P4 start some seconds after the fault in the related probe; they automatically stop some seconds after the probe restarts normal operation. Check the connections before replacing the probe.

Temperature alarms HA, LA, HA2, and LA2 automatically stop as soon as the temperature returns to normal values.

Alarms **EA** and **CA** (with **i1F** = **bAL**) recover as soon as the digital input is disabled. Alarm **CA** (with **i1F** = **PAL**) recovers only by switching OFF and ON the device.

15 Use of the Programming Hot Key

XM controllers can download or upload the parameter list from its own non-volatile internal memory to the Hot Key and vice-versa through a TTL connector. The Hot Key will not change the **Adr**.

15.1 Download (From the Hotkey to the Device)

- 1. Turn OFF the controller by pressing the on/off button. Insert the Hot Key and then turn the controller back ON.
- 2. The parameter list of the Hot Key is downloaded into the controller memory automatically and **doL** will display. After 10 seconds, the controller will start working with the new parameters.
- 3. End will display at the end of the data transfer phase if the controller is programmed correctly. Err will display if there is an error or failure in programming.
 - End = correct programming. This means the controller will start regularly with the new programming.
 - Err = failed programming. In this case, turn the controller OFF and then ON if you want to restart the download again or remove the Hot Key to abort the operation.
- 4. Remove the Hot Key.

NOTE: The procedure may fail if the firmware version and the controller models are different.

15.2 Upload (From the Device to the Hotkey)

- 1. When the XM controller is ON, insert the Hot Key and press and release the up arrow button.
- 2. The upload will begin, and **UPL** will blink on the display. **End** will display at the end of the data transfer phase if a successful upload has occurred. **Err** will display if there is an error or failure in programming.
 - End = correct programming.
 - Err = failed programming. In this case, press the SET key if you want to restart the programming again or remove the unprogrammed Hot Key.
- 3. Remove the Hot Key.

NOTE: The upload procedure will overwrite everything previously uploaded from the last Hot Key upload.

16 Controlling Loads

16.1 Cooling Output

Regulation is performed according to the temperature measured by the thermostat probe (physical probe or virtual probe) obtained by a weighted average between the two probes following the formula:

value_for_room_regulation =

<u>(rPA*rPE + rPb*[100-rPE])</u> 100

If the temperature increases and reaches the setpoint plus differential, the solenoid valve opens and then closes when the temperature reaches the setpoint value again.

In case of error in the thermostat probe, the opening and closing time of the solenoid valve is configured by the **Con** and **CoF** parameters.

16.2 Standard Regulation and Continuous Regulation

The regulation can be performed in three ways:

- Standard regulation the goal of the first regulation (standard regulation) is to reach the best superheat via a classic temperature regulation obtained using hysteresis.
- Continuous regulation the second regulation allows the valve to realize a high performance temperature regulation with a good factor of superheat precision. This kind of regulation can be used only in centralized plants and is available only with the electronic expansion valve by selecting the [CrE = Y] parameter.
- Use of evaporator valves the third kind of regulation is through the use of evaporator valves [**CrE = EUP**]; in this configuration, the valve is placed at the end of the evaporator. In any case, the regulation is performed via the PI regulator that determines the valve opening percentage.

16.2.1 Standard regulation: [CrE = n]

The **HY** parameter is the differential for the standard ON/OFF regulation. In this case, the **int** parameter is neglected.

16.2.2 Continuous regulation: [CrE = Y]

The **HY** parameter is the proportional band of the PI that is in charge of the room temperature regulation. It is recommended to use at least [**HY** = $12^{\circ}F/6.0^{\circ}C$]. The **int** parameter is the integral time of the same PI regulator. Increasing the **int** parameter causes the PI regulator to react slowly and is true vice versa. To disable the integral part of regulation, set [**int** = **0**].

16.2.3 Evaporator valves: [CrE = EUP]

In this case, the system performs a regulation of the temperature without considering the superheat (in fact, the valve is at the end of the evaporator). The **HY** parameter is the proportional band for the temperature regulation and **int** is the integral time for the regulation. The proportional action is performed only when the compressor relay is on. In this case, there is no superheat regulation.

16.3 Defrost

16.3.1 Defrost starting

In any case, the device checks the temperature that is read by the configured defrost probe before starting the defrost, after that:

- The defrost is made every IdF time.
- Defrost cycle starting can be operated locally (manual activation by means of the keyboard or digital input or end of interval time) or the command can come from the master defrost unit of the LAN. In this case, the controller will operate the defrost cycle following the parameters it has programmed. At the end of the drip time, it will wait until all the other controllers of the LAN finish their defrost cycle before restarting the normal regulation of the temperature according to **dEM** parameter.
- Each time any of the LAN controller begins a defrost cycle, it issues the command into the network making all the other controllers start their own cycle. This allows a perfect synchronization of the defrost in the whole multiplexed cabinet according to the LMd parameter.

16.3.2 Defrost Ending

 If dPA and dPb are present and [d2P = Y], the device stops the defrost procedure when dPA is higher than dtE temperature and dPb is higher than dtS temperature.

At the end of defrost, the drip time is controlled through the **Fdt** parameter.

16.4 Fans

16.4.1 Control With Relay

The fan control mode is selected by means of the **FnC** parameter:

- **C-n** = running with the solenoid valve, OFF during defrost
- C-Y = running with the solenoid valve, ON during defrost
- **O-n** = continuous mode, OFF during defrost
- **O-Y** = continuous mode, ON during defrost

An additional parameter **FSt** provides the setting of the temperature, detected by the evaporator probe, above which the fans are always OFF. This can be used to verify that air is circulated only if this temperature is lower than set in the **FSt**.

16.4.2 Control With Analog Output (If Present)

The modulating output [trA = rEG] works in a proportional manner (excluding the first AMt seconds where the fans speed is the maximum. The regulation setpoint is relative to the regulation setpoint and is indicated by ASr, the proportional band is always located above the [SET + ASr] value and its value is PbA. The fans are at minimum speed AMi when the temperature read by the fan probe is [SET + ASr] and the fan is at maximum speed (AMA) when the temperature is [SET + ASr + PbA].

16.5 Anti-Sweat Heaters

Anti-sweat heater regulation can be performed with the on board relay (if OA6 = AC) or with the analog output (if present by setting trA = AC). However, the regulation can be performed in two ways:

- Without real dewpoint information: in this case the default value for dewpoint is used (**SdP** parameter).
- Receiving dewpoint from XWEB5000 system: the SdP parameter is overwritten when a valid value for dewpoint is received from XWEB. In case the XWEB link is lost, SdP is the value that will be used for safety.
- The best performance can be obtained using probe 4. In this case, the regulation follows the chart illustrated in Figure 16-2:

Figure 16-2 - Anti-Sweat Heaters

Probe 4 should be placed on the showcase glass. For each cabinet, only one probe 4 (P4) can be used; the P4 will send its value to the other sections that are connected to the LAN.

Functioning with Probe 4 within the LAN:

Table 16-1 - Functioning with Probe 4 within the LAN

Parameter	XM6x8D_1 Without Probe 4	XM6x8D_2+ With Probe 4	XM6x8D_3+ Without Probe 4	
Adr	n	n + 1	n + 2	
LCP	LCP = n	LCP = Y	LCP = n	
P4C	LAN or probe not connected	P4C = NTC, PtC or PtM	LAN or probe not connected	
trA	trA = AC if the device has the analog output			
OA6	OA6 = AC if the device will use the AUX relay for regulation			

Functioning Without Probe 4:

Table 16-2 - Functioning Without Probe 4

Parameter	XM6x8D Without Probe 4
P4C	nP
AMt	% of ON

In this case, regulation is performed by switching the auxiliary relay ON and OFF on a 60-minute time base. The ON time will be the **AMt** value, so that the relay will be ON for **AMt** minutes and OFF for [**60-AMt**] minutes.

In case of P4 error or if P4 is absent, the output is at **AMA** value for the **AMt** time then the output is at **0** value for the time [**255** - **AMt**] time performing a simple PWM modulation.

16.6 Auxiliary Output

The auxiliary output is switched ON and OFF by means of the corresponding digital input or by pressing and releasing the down arrow key.

17 Technical Data

Table 17-1-XM678D Technical Specifications

	CX660 KEYBOARD
Housing	Self-extinguishing ABS
Dimensions	Case: CX660 fascia Front: 35 mm x 77 mm Depth: 18 mm
Mounting	Panel Mount: 29 mm x 71 mm panel cut-out
Protection	IP20
FIOLECTION	Frontal: IP65
Power Supply	From XM600K power module
Display	Three (3) digits, red LED, 14.2 mm high
Optional Output	Buzzer
	POWER MODULES
Case	8 DIN
Connections	Screw terminal block \leq 1.6 $\rm mm^2$ heat-resistant wiring and 5.0 mm Faston or screw terminals
Power Supply	24VAC - An isolated transformer for the XM678D power supply must be used. <u>Do not</u> share power with any other devices.
Power Absorption	20VA max
Inputs	Up to 6 NTC/PTC/Pt1000 probes. Max. cable length 15m
Digital Inputs	Three (3) voltage-free. Max. cable length 15m
Relay Outputs (<u>Total current on loads MAX 16A</u>)	Solenoid Valve: relay SPST 5A, 250Vac Defrost: relay SPST 16A, 250Vac Fan: relay SPST 8A, 250Vac Light: relay SPST 16A, 250Vac Alarm: SPDT relay 8A, 250Vac Aux: SPST relay 8A, 250Vac
Valve Output	Bipolar or unipolar valves
Maximum Distance between Controller and Valve	Up to 10m with shielded twisted cables, AWG 18 (0.823mm2) or less.
Maximum Length for LAN	Up to 30m with shielded twisted cables, AWG 20 (0.51mm2) or less.
Optional Output (AnOUT)	PWM/ Open Collector outputs: PWM or 12VDC max 40mA
Depending on the model	Analog Output: 4 to 20mA or 0 to 10V
Serial Output	RS485 with MODBUS-RTU and LAN
Data Storing	On the volatile memory (EEPROM)
Kind of Action	1B
Pollution Degree	2
Software Class	A
Operating Temperature	14 to 140°F (-10 to 60°C)
Storage Temperature	-13 to 140°F (-25°C to 60°C)

Table 17-1- XM678D Technical Specifications

Relative Humidity	20 to 85% (no condensing)
	NTC probe: -58 to 230°F (-40 to 110°C)
Measuring and Regulation Range	PTC probe: -67 to 302°F (-50 to 150°C)
	Pt1000 probe: -148 to 212°F (-100 to 100°C)
Resolution	1°C or 1°F or 0.1°C (selectable)
Accuracy (ambient temperature 77°F (25°C))	±0.5 °C ±1 digit

18 Default Parameter Map

The first column numbers are simple indexes not related to the position on the device menu. The total amount of parameters can be different depending on the applications. SUBMENUS: V1...V30 ELECTRONIC VALVE belongs to EEV.

	Label	Value	Description	Range		Notes
•	EEU		ELECTRONIC VALVE			By pressing SET you can enter the electronic expansion valve submenu.
				Type of gas used by plant. <u>Fundamental parameter for correct functioning of all</u> <u>system</u> .		
				LABEL	REFRIGERANT	OPERATING RANGE
				R22	r22	-58 to 120°F/-50 to 60°C
				134	r134A	-58 to 120°F/-50 to 60°C
				290	r290 - Propane	-58 to 120°F/-50 to 60°C
				404	r404A	-94 to 120°F/-70 to 60°C
				47A	r407A	-58 to 120°F/-50 to 60°C
	FtY	290	Kind of gas	47C	r407C	-58 to 120°F/-50 to 60°C
∎		200	Kind of guo	47F	r407F	-58 to 120°F/-50 to 60°C
				410	r410A	-58 to 120°F/-50 to 60°C
				448	r448A	-69 to 120°F/-45 to 60°C
				449	r449A	-69 to 120°F/-45 to 60°C
				450	r450A	-69 to 120°F/-45 to 60°C
				507	r507	-94 to 120°F/-70 to 60°C
				513	r513A	-69 to 120°F/-45 to 60°C
				CO ₂	r744 - CO ₂	-58 to 120°F/-50 to 60°C
•	Atu	n	Minimum STABLE superheat search	No	p; Yes	This parameter enables the search of the minimum stable superheat. The lowest admitted value is LSH+2°C.
•	AMS	n	Self adaptive SH regulation enabling	No	p; Yes	This parameter enables the self adaptive regulation of the superheat. CrE = no must to be set, when this function is enabled.
•	SSH	9	Superheat setpoint	[1°F [0.1°C	to 45°F] to 25.5°C]	This is the value used to regulate the superheat.
₽	Pb	36	Proportional band	[1°F t [0.1°C	o 108°F] to 60.0°C]	The valve changes its opening on the band [SSH, SSH + Pb]. At SSH value of superheat the valve will be at 0% (without integral contribution) and at [SSH + Pb] value of superheat the valve will be at MnF. For values bigger than [SSH + Pb] the valve is completely opened.
•	rS	-3	Proportional band reset	[-12.0°C	c to 12.0°C]	It allows to move the regulation band, above or below the SH setpoint.

	Label	Value	Description	Range	Notes
•	inC	220	Integration time for superheat regulation	0 to 255s	-
P	PEO	0	Valve opening in case of error on probes P5 or P6	0 to 100%	If a temporary probe error occurs, valve opening percentage is PEo until PEd time is elapsed.
P	OPE	85	Start opening percentage for the time SFD. It's not limited by the MnF parameter.	0 to 100%	Opening valve percentage when the start function is active. This phase duration is SFd time.
•	SFd	0.0	Duration of soft start phase with opening at OPE	0.0 to 42min00sec (252)	Set start function duration and post-defrost duration. During this phase the alarms are neglected. Format : min. 10sec Resolution : 10sec
•	OPd	85	Valve opening percentage during hot gas defrost. It's not limited by the MnF parameter.	0 to 100%	Opening valve percentage during hot gas defrost. During hot gas defrost there is no SH control.
P	MnF	100	Maximum percentage of opening admitted (during normal functioning)	0 to 100%	During the regulation it sets the maximum valve opening percentage. This value is not used during the SFd phase (soft start) and during hot gas defrost, where the fixed percentage of the valve opening is set by oPd .
P	Fot	nU	Manual opening	0 to 100% nU	Allows the valve opening to force to the specified value. This value overwrites the one calculated by PID algorithm. CAUTION ! It must be [Fot = nU] to have correct superheat regulation.
P	PA4	0	Probe value at 4mA or at 0V	Meas Unit Range BAR [PrU=rE] -1.0 to P20 [PrU=Ab] 0.0 to P20 [PrU=Ab] 0.0 to P20 PSI [PrU=rE] -14 to P20 [PrU=Ab] 0 to P20 [PrU=Ab] 0 to P20 dKP [PrU=rE] -10 to P20 [PrU=Ab] 0 to P20 [PrU=Ab] 0 to P20	Pressure value at 4mA for current probe [4 to 20mA] or value at 0V for ratiometric probes. The value is absolute or relative according to PrU parameter.

	Label	Value	Description	Range	Notes
P	P20	200	Probe value at 20mA or at 5V	Meas Unit Range BAR [PrU=rE] PA4 to 60.0 [PrU=Ab] PA4 to 60.0 [PrU=Ab] PA4 to 870 PSI [PrU=rE] PA4 to 870 [PrU=Ab] PA4 to 870 [PrU=Ab] PA4 to 600 dKP [PrU=rE] PA4 to 600	Pressure value at 20mA for current probe [4 to 20mA] or value at 5V for ratiometric probes. The value is absolute or relative according to PrU parameter.
•	LPL	0	Lower Pressure Limit for superheat regulation	PA4 to P20	EXPERT: When the suction pressure goes down the lower bound LPL , superheat regulation will use a fixed pressure value. Otherwise, the normal pressure value will be used (according to PrU parameter).
•	МОР	100	Maximum operating pressure threshold and valve closing of dML value	LOP to P20	If the suction pressure exceeds the maximum operating pressure value, the device will signal this situation generating the MOP alarm (according to PrU parameter).
•	LOP	0	Minimum operating pressure threshold and valve opening of dML value	PA4 to MOP	If the suction pressure exceeds the minimum operating pressure value, the device will signal this situation generating the LOP alarm (according to PrU parameter).
₽	dML	30	Delta [MOP - LOP]	0 to 100%	Until the MOP alarm is active, the valve will close, every second, of a value equal to the dML percentage. Until the LOP alarm is active, the valve will open, every second, to a value equal to the dML percentage.
•	MSH	144	Maximum superheat alarm threshold	[LSH to 144°F] [LSH to 80.0°C]	If the superheat value exceeds MSH value, the display will show the MSH message until the delay time SHd expires.
P	LSH	3	Minimum superheat alarm threshold	[0°F to MSH] [0.0°C to MSH]	If the superheat value is lower than LSH during the SHd delay time, then the display will show the message LSH. As soon as the superheat value is lower than LSH value, the valve will close immediately, without waiting the SHd delay time (to avoid evaporator flooding).
•	SHY	1	Hysteresis for superheat alarm recovery [MSH - SHY] and [LSH + SHY]	[1°F to 45°F] [0.1°C to 25.5°C]	-
•	SHd	0.0	Delay of superheat alarm signaling	0.0 to 42min00sec (252)	If a superheat alarm occurs, the delay time SHd expires before the controller shows an alarm. Format: min.10sec Resolution: 10sec

	Label	Value	Description	Range	Notes
•	FrC	0	Integration additive constant (Fast-recovery)	0 to 100s	It permits to decrease faster the integral action when SH value is below the setpoint. With higher values the valve closes faster. If [FrC = 0] fast recovery function is disabled.
P	Sub	10	Number of pressure values used to calculate the average pressure	0 to 100	It uses the last average values of the pressure to calculate the superheat.
P	SLb	0	Reaction Time	0 to 255s	0 = controller calculates automatically the time to update the valve position. 1 to 255s = controller updates valve position every SLb seconds
•	tEP	nU	Predefined valve selection	nU to 10	nU = manual setting See Section 6.3, Valve Connections and Configuration
P	tEU	bP	Kind of valve	uP; bP	uP = unipolar valve (5-6 wires) bP = bipolar valve (4 wires)
P	HSF	FUL	Kind of motor movement	HAF; FUL	 HAF = half step. Use this setting for the unipolar valve. FUL = half step. Use this setting for the bipolar valve.
•	LSt	0	Minimum number of steps where the valve can be considered as completely closed	0 to USt (* 10)	For manual adjusting of the valve.
•	USt	0	Maximum number of steps that can be performed	LSt to 800 (* 10)	For manual adjusting of the valve.
•	ESt	0	Extra steps in closing phase	0 to 255 (* 10)	Extra steps done by the valve during closing phase to assure the valve closes completely.
•	Sr	10	Step rate: the speed to change step. A too high value causes incorrect driving	10 to 600 (steps/sec)	For manual adjusting of the valve.
•	СРР	0	Current per phase during bipolar valve driving	0 to 100 (* 10mA)	For manual adjusting of the valve.
P	CHd	0	Current per phase to maintain the actual position (Holding current)	0 to 100 (* 10mA)	For manual adjusting of the valve.
₽	GtH	0	Autozero function	0 to 15h	To prevent any possible wrong position caused by a long period without closing the valve, the controller after gtH hours, as soon as the opening open percentage is under 20%, will force complete closer of the valve, and then will restart working.

	Label	Value	Description	Range	Notes
				REGULATION	
*	SET	-5.0	Setpoint	LS to US	Target setpoint for temperature regulation.
*	HY	18	Differential	[1°F to 45°F] [0.1°C to 25.5°C]	If [CrE = n] then HY is the hysteresis for ON/ OFF thermoregulation. If [CrE = Y] or [CrE = EUP] then HY is the proportional band for temperature PI controller. On these cases the value should be greater than 5°C.
*	int	220	Integral time for room temperature regulation	0 to 255s	This value is used only when [CrE = Y] or [CrE = EUP]. It is the integral time for thermoregulation: high values mean slower regulation. 0 (zero) = no integral action
莱	CrE	Y	Continuous regulation activation	n(0); Y(1); EUP(2)	With [CrE = Y] or [CrE = EUP], the regulation becomes PI, HY becomes a band and int an integral time. n = standard regulation Y = continuous regulation, to be used only in centralized plants EUP = evaporator valves (See Section 16.2, Standard Regulation and Continuous Regulation)
楙	LS	-50	Minimum setpoint	[-67°F to SET] [-55.0°C to SET]	Sets the minimum acceptable value for the setpoint.
棽	US	70	Maximum setpoint	[SET to 302°F] [SET to 150.0°C]	Sets the maximum acceptable value for the setpoint.
*	odS	0	Outputs activation delay at start up	0 to 255min	This function is enabled at the initial startup of the device and inhibits any output activation for the period of time set in this parameter (AUX and Light can work).
豢	AC	0	Anti-short cycle delay	0 to 60min	Interval between the solenoid valve stop and the following restart.
*	CCt	0.0	Continuous cycle duration	0.0 to 24h00min (144)	Compressor ON time during continuous cycle: Allows the length of the continuous cycle to set: compressor stays ON without interruption for the CCt time. It can be used, for instance, when the room is filled with new products. Format: hours.10min Resolution: 10min
*	CCS	36	Continuous cycle setpoint	[-67°F to 302°F] [-55.0°C to 150.0°C]	Setpoint for continuous cycle: value used during the continuous cycle.
*	Con	15	Compressor ON time with faulty probe	0 to 255min	Solenoid valve ON time with faulty probe: Time during which the solenoid valve is ON in case of faulty thermostat probe. With COn = 0 , solenoid valve is always OFF.
*	CoF	30	Compressor OFF time with faulty probe	0 to 255min	Solenoid valve OFF time with faulty probe: Time during which the solenoid valve is OFF in case of faulty thermostat probe. With COF = 0, solenoid valve is always ON.

	Label	Value	Description	Range	Notes
-888 -	CF	۴	Temperature measurement unit	°F(1); °C(0)	 °F = Fahrenheit. °C = Celsius; CAUTION! When the measurement unit changes, all parameters with temperature values will have to be checked.
豢	PrU	rE	Pressure Mode	rE(0); Ab(1)	Defines the mode to evaluate the pressure values. CAUTION! PrU value is used for all the pressure parameters. If [PrU = rE], all pressure parameters are in relative pressure unit, if [PrU = Ab], all pressure parameters are in absolute pressure unit.
-888	PMU	PSI	Pressure measurement unit	bAr(0); PSI(1); MPA(2)	Selects the pressure measurement units. MPA means the value of pressure measured by kPA*10.
-888	PMd	PrE	Pressure probe visualization	tEM, PrE	Selects the visualization of pressure probe (P5): tEM = temperature; PrE = pressure
-888	rES	dE	Resolution (only °C)	dE; in	Sets decimal point display. in = 1°C; dE = 0.1°C.
-888	Lod	tEr	Local display: default display	nP(0); P1(1); P2(2); P3(3); P4(4); P5(5); P6(6); tEr(7); dEF(8)	Selects which probe is displayed by the instrument. nP = no probe; P1, P2, P3, P4, P5, P6, tEr = virtual probe for thermostat; dEF = virtual probe for defrost.
-888 -	rEd	tEr	Remote display: default display	nP(0); P1(1); P2(2); P3(3); P4(4); P5(5); P6(6); tEr(7); dEF(8)	It selects which probe is displayed by the X- REP. nP = no probe; P1, P2, P3, P4, P5, P6, tEr = virtual probe for thermostat; dEF = virtual probe for defrost.
-888 -	dLY	0.0	Display delay	0.0 to 24h00min (144)	When the temperature changes, the display is updated of 1°F/1°C when the delay time expires. Format: min.10sec Resolution: 10sec
*	rPA	P1	Regulation probe A	nP(0); P1(1); P2(2); P3(3); P4(4); P6(5)	First probe used to regulate room temperature. If [rPA = nP], the regulation is performed with the real value of rPb .
*	rPb	nP	Regulation probe B	nP(0); P1(1); P2(2); P3(3); P4(4); P6(5)	Second probe used to regulate room temperature. If $[\mathbf{rPb} = \mathbf{nP}]$, the regulation is performed with the real value of rPA .
*	rPE	100	Virtual probe percentage (room temperature)	0 to 100%	Defines the percentage of the rPA with respect to rPb . The value used to regulate the room temperature is obtained by: value_for_room = (rPA*rPE + rPb*(100-rPE))/ 100

	Label	Value	Description	Range	Notes
				DEFROST	
*	dPA	P2	Defrost probe A	nP(0); P1(1); P2(2); P3(3); P4(4); P6(5)	First probe used for defrost. If [dPA = nP], the regulation is performed by time.
**	dPb	nP	Defrost probe B	nP(0) - P1(1) - P2(2) - P3(3) - P4(4) - P5(5)	Second probe used for defrost. If [dPb = nP], the regulation is performed with dPA .
*	dPE	100	Percentage of the first defrost probe	0 to 100 (100=dPA, 0=dPb)	Defines the percentage of the dPA with respect to dPb . The value used to regulate room temperature is obtained by: value_for_defrost= (dPA*dPE + dPb*(100- dPE))/100
*	tdF	EL	Defrost kind	EL; in	 EL = defrost with electrical heater in = hot gas defrost NOTE: The valve opening percentage during the defrost is set by the parameter oPd.
*	Srt	302	Heater setpoint during defrost	[-67°F to 302°F] [-55.0°C to 150°C]	If tdF=EL during the defrost the defrost relay perform an ON/OFF regulation with Srt as set point.
*	Hyr	4	Differential for heater	[1°F to 45°F] [0.1°C to 25.5°C]	If the defrost probe temperature is bigger than Srt for all tod time, the defrost ends although the defrost probe temperature is lower than dtE or dtS. It permits to reduce defrost duration.
*	tod	255	Time out for heater	0 to 255min	If the difference between the two defrost probes stays lower than dtP for all ddP time the defrost is activated;
*	dP2	n	Defrost with two probes	n(0) – Y(1)	 n= only the dPA probe is used to defrost management; Y= defrost is managed with dPA probe and dPb probe. Defrost can performed only if both probe value are lower than dtE for dPA probe and dtS for dPb probe
*	dtE	46	End defrost temperature on probe A (dPA)	[-67°F to 122°F] [-55.0°C to 50.0°C]	Set the temperature measured by the evaporator probe dPA which stops the defrost. Parameter enabled only when the evaporator probe is present.
*	dtS	46	Defrost termination temperature (Probe B)	[-67°F to 122°F] [-55.0°C to 50.0°C]	(Enabled only when the evaporator probe is present) Sets the temperature measured by the evaporator probe dPb resulting to end of defrost.
*	idF	6	Defrost interval	0 to 120hours	Sets the time interval between the beginning of two defrost cycles. [idF = 0]: the defrost can only be activated manually, or through RS485 or from an external contact or from the LAN.
*	MdF	45	(Maximum) defrost duration	0 to 255min	When dPA is not present, it sets the defrost duration, otherwise it sets the maximum duration for defrost.
**	dSd	0	Defrost start delay after request	0 to 255min	Useful when different defrost start times are necessary to avoid overloading the plant.

	Label	Value	Description	Range	Notes
*	dFd	it	Display during defrost	rt; it; SEt; dEF	 rt = real temperature for Lod probe it = initial temperature (reading when defrost start) SEt = setpoint value dEF = "dEF" label is visualized
*	dAd	30	Display delay	0 to 255min	Set the maximum time between the end of defrost and the restarting of the real room temperature display.
*	Fdt	0	Drain downtime after defrost	0 to 255min	Time interval between reaching the defrost termination temperature and the restoration of the control's normal operation. This time allows the evaporator to eliminate water drops that might have formed due to defrost. The fan and the thermoregulation outputs are OFF during this time.
*	dPo	n	Defrost at power ON	n; Y	First defrost after startup: Y = immediately n = after the idF time
**	dAF	0.0	Defrost delay after continuous cycle	0.0 to 24h00min (144)	Time interval between the end of the fast freezing cycle and the following defrost related to it. Format: hours.10min Resolution: 10min
				FAN	
\$	FPA	P2	Fan probe A	nP(0); P1(1); P2(2); P3(3); P4(4); P6(5)	First probe used for fan. If [FPA = nP], the regulation is performed with real value of FPb .
\$	FnC	O-n	Fan operating mode	C-n; C-Y; O-n; O-Y	 C-n = running with the solenoid valve, OFF during the defrost C-Y = running with the solenoid valve, ON during the defrost O-n = continuous mode, OFF during the defrost O M = continuous mode, ONE during the defrost
\$					defrost
	Fnd	1	Fan delay after defrost	0 to 255min	defrost Time interval between the ending of defrost and the starting of the evaporator fans.
\$	Fnd FCt	1	Fan delay after defrost Temperature differential to avoid short cycles of fans	0 to 255min [0°F to 90°F] [0.0°C to 50.0°C]	defrost Time interval between the ending of defrost and the starting of the evaporator fans. If the difference of temperature between the evaporator and the room probes is more than the value of the FCt parameter, the fans will start.
\$ \$	Fnd FCt FSt	1 10 99	Fan delay after defrost Temperature differential to avoid short cycles of fans Fan stop temperature	0 to 255min [0°F to 90°F] [0.0°C to 50.0°C] [-67°F to 122°F] [-55.0°C to 50.0°C]	 defrost Time interval between the ending of defrost and the starting of the evaporator fans. If the difference of temperature between the evaporator and the room probes is more than the value of the FCt parameter, the fans will start. Evaporator probe temperature above which the fan is always OFF.
\$ \$ \$	Fnd FCt FSt FHY	1 10 99 2	Fan delay after defrost Temperature differential to avoid short cycles of fans Fan stop temperature Fan stop differential	0 to 255min [0°F to 90°F] [0.0°C to 50.0°C] [-67°F to 122°F] [-55.0°C to 50.0°C] [1°F to 45°F] [0.1°C to 25.5°C]	 defrost Time interval between the ending of defrost and the starting of the evaporator fans. If the difference of temperature between the evaporator and the room probes is more than the value of the FCt parameter, the fans will start. Evaporator probe temperature above which the fan is always OFF. When stopped, the fan restarts when the fan probe reaches [FSt - FHY] value of temperature.

	Label	Value	Description	Range	Notes
જ	Fod	0	Fan activation time after defrost (without compressor)	0 to 255min	Forces fan activation for the indicated time.
ş	Fon	0	Fan ON time	0 to 15min	With [FnC = C-n or C-Y] (fan activated in parallel with compressor), it sets the evaporator fan ON cycling time when the compressor is OFF. With [Fon = 0] and [FoF ≠ 0], the fan is always OFF. With [Fon = 0] and [FoF = 0], the fan is always OFF.
\$	FoF	0	Fan OFF time	0 to 15min	With [FnC = C-n or C-Y] (fan activated in parallel with compressor), it sets the evaporator fan OFF cycling time when the compressor is OFF. With [Fon = 0] and [FoF \neq 0], the fan is always OFF. With [Fon = 0] and [FoF = 0], the fan is always OFF.
¥	trA	UAL	Kind of PWM regulation	UAL; rEG; AC	 PWM output if CoM value is different from OA7. UAL = the output is at FSA value (manual value). rEG = the output is regulated with fan algorithm described in fan section. AC = anti-sweat heaters control (require XWEB5000 system).
Ł	SOA	0	Manual value of the analog output	AMi to AMA	Value for the output if [trA = UAL] (0 to 100%).
Ł	SdP	55	Default Dewpoint value (or safety value in case of XWEB link lost)	[-67°F to 122°F] [-55.0°C to 50.0°C]	Default value of dewpoint used when there is no supervising system (XWEB5000). Used only if [trA = AC].
Ł	ASr	1	Differential for fan/offset for anti-sweat heater	[-45°F to 45°F] [-25.5°C to 25.5°C]	trA = AC: dewpoint offset. trA = rEG: differential for modulating fan regulation.
Ł	PbA	10	Proportional band for modulating output	[1°F to 45°F] [0.1°C to 25.5°C]	Differential for anti-sweat heaters
Ł	AMi	0	Minimum output for modulating output	0 to AMA	Minimum value for analog output: (0 to AMA)
Ł	AMA	100	Maximum output for modulating output	AMi to 100	Maximum value for analog output: (AMi to 100)
Ł	AMt	20	Time with fan at maximum speed or ON time for relay on anti-sweat regulation	[10 to 60s] or [10 to 60min]	trA = AC: Anti-sweat heaters cycle period. trA = rEG: Time with fan at maximum speed. The fan works at maximum speed during this time. If intended for fan, time is based in seconds; for anti-sweat regulation, the time is based in minutes.

	Label	Value	Description	Range	Notes
				ALARM	
(!)	rAL	tEr	Probe for room temperature alarm	nP; P1; P2; P3; P4; P6; tEr	Selects the probe used to signal the alarm temperature.
(!)	ALC	Ab	Room temperature alarm configuration: relative to setpoint or absolute	rE; Ab	 rE = High and Low alarms related to the setpoint. Ab = High and Low alarms related to the absolute temperature.
(!)	ALU	41	High room temperature alarm setting	[0.0°C to 32.0°C] or [ALL to 150.0°C]	ALC = rE: [32°F to 90°F] or [0.0°C to 32 °C] ALC = Ab: [ALL to 302°F] or [ALL to 150°C] When this temperature is reached and the ALd delay time is expired, the HA alarm will be enabled.
(!)	ALL	-25	Low room temperature alarm setting	[0.0°C to 50.0°C] or [-55.0°C to ALU]	ALC = rE: [32°F to 90°F] or [0.0°C to 32.0°C] ALC = Ab: [-67.0°F to ALU] or [-55.0°C to ALU] After this temperature is reached and the ALd delay time is expired, the LA alarm will be enabled.
(!)	АНҮ	2	Differential for room temperature alarm	[1°F to 45°F] [0.1°C to 25.5°C]	Threshold recovery after a temperature alarm.
((İ))	ALd	60	Room temperature alarm delay	0 to 255min	Time interval between the detection of an alarm condition and the corresponding alarm signaling.
(i)	dAo	0.0	Delay of temperature alarm at start-up	0.0 to 24h00min	After powering the device: time interval between the detection of the temperature alarm condition and the alarm signaling. Format: hours.10min Resolution: 10min
((İ))	EdA	30	Alarm delay at the end of defrost	0 to 255min	At the end of the defrost cycle: time interval between the detection of the temperature alarm condition and the alarm signaling.
((!))	dot	15	Temperature alarm exclusion after door open	0 to 255min	-
(!)	Sti	nU	Stop regulation interval	0.0 to 24h00min; nU	After regulating continuously for Sti time, the valve closes for Std time to prevent ice from forming. Format: hours.10min Resolution: 10min
((İ))	Std	1	Stop duration	1 to 255min	Defines the stop regulation time after Sti . During this interval, the display shows StP message.
((!))	tbA	n	Silencing alarm relay by pressing a key	n; Y	-

	Label	Value	Description	Range	Notes
				OUTPUT CONFIGURATION	
	OA1	CPr	Relay on terminals 11-12 configuration	nU; CPr; dEF; FAn; ALr; LiG; AUS; db; onF; AC	 nU = not used; CPr = compressor/valve; dEF = defrost; FAn = Fan; ALr = Alarm; LiG = Light; AUS = auxiliary; db = heater for neutral zone (not available with CrE = Y); onF = ON/OFF; AC = anti-sweat; E3r: solenoid valve for EX3 or for mechanical solenoid valve
	OA6	AUS	Relay on terminals 17-18 configuration	nU; CPr; dEF; FAn; ALr; LiG; AUS; db; onF; AC	 nU = not used; CPr = compressor / valve; dEF = defrost; FAn = Fan; ALr = Alarm; LiG = Light; AUS = auxiliary; db = heater for neutral zone (not available with CrE = Y); onF = ON/OFF; AC = anti-sweat; E3r: solenoid valve for EX3 or for mechanical solenoid valve
	OA7	nU	Relay on terminals	nU; CPr; dEF; FAn; ALr; LiG; AUS; db; onF; AC	 nU = not used; CPr = compressor/valve; dEF = defrost; FAn = Fan; ALr = Alarm; LiG = Light; AUS = auxiliary; db = heater for neutral zone (not available with CrE = Y); onF = ON/OFF; AC = anti-sweat; E3r: solenoid valve for EX3 or for mechanical solenoid valve
	СоМ	tEn	Modulating output configuration	PM5; PM6; OA7; CUr; tEn	For models with PWM/ O.C. output: PM5 = PWM 50Hz PM6 = PWM 60Hz OA7 = two state, it can be used as an open collector output. For models with [4 to 20mA] or [0 to 10V] output: Cur = 4 to 20mA current output. tEn = 0 to 10V voltage output.
	AOP	CL	Alarm relay polarity	OP; CL	CL = normally closed OP = normally opened
	iAU	n	Auxiliary output independent from ON/OFF state	n; Y	 n = if the instrument is switched off also the auxiliary output is switched off. Y = the auxiliary output state is unrelated to the ON/OFF device status.
				DIGITAL INPUTS	
Ť	i1P	CL	Digital input 1 polarity	OP; CL	 CL = the digital input is activated by closing the contact. OP = the digital input is activated by opening the contact.
ŤŤ	i1F	dor	Digital input 1 configuration	EAL; bAL; PAL; dor; dEF; AUS; LiG; OnF; Htr; FHU; ES; HdY	 EAL = external alarm; bAL = serious external alarm; PAL = pressure switch activation; dor = door open; dEF = defrost activation; AUS = auxiliary activation; LiG = light activation; OnF = switch on/off the instrument; Htr = change type of action; FHU = not used; ES = activate energy saving; HdY = activate holiday function

	Label	Value	Description	Range	Notes
ŤŤ	d1d	15	Digital input 1 activation delay	0 to 255min	When [i1F = PAL]: time interval to calculate the number of the pressure switch activation. When [i1F = EAL or bAL] (external alarms): d1d parameter defines the time delay between the detection and the successive signaling of the alarm. When [i1F = dor]: this is the delay to activate door open alarm.
ŤŤ	i2P	CL	Digital input 2 polarity	OP; CL	 CL = the digital input is activated by closing the contact. OP = the digital input is activated by opening the contact.
ŤŤ	i2F	LiG	Digital input 2 configuration	EAL; bAL; PAL; dor; dEF; AUS; LiG; OnF; Htr; FHU; ES; HdY	 EAL = external alarm; bAL = serious external alarm; PAL = pressure switch activation; dor = door open; dEF = defrost activation; AUS = auxiliary activation; LiG = light activation; OnF = switch on/off the instrument; Htr = change type of action; FHU = not used; ES = activate energy saving; HdY = activate holiday function.
ŤŤ	d2d	5	Digital input 2 activation delay	0 to 255min	When [i2F = PAL]: time interval to calculate the number of the pressure switch activation. When [i2F = EAL or bAL] (external alarms): d2d parameter defines the time delay between the detection and the successive signaling of the alarm. When [i2F = dor]: this is the delay to activate door open alarm.
ŤŤ	i3P	CL	Digital input 3 polarity	OP; CL	 CL = the digital input is activated by closing the contact. OP = the digital input is activated by opening the contact.
ŤŤ	i3F	ES	Digital input 3 configuration	EAL; bAL; PAL; dor; dEF; AUS; LiG; OnF; Htr; FHU; ES; HdY	EAL = external alarm; bAL = serious external alarm; PAL = pressure switch activation; dor = door open; dEF = defrost activation; AUS = auxiliary activation; LiG = light activation; OnF = switch on/off the instrument; Htr = change type of action; FHU = not used; ES = activate energy saving; HdY = activate holiday function.
ŤŤ	d3d	0	Digital input 3 activation delay	0 to 255min	When [i3F = PAL]: time interval to calculate the number of the pressure switch activation. When [i3F = EAL or bAL] (external alarms): d3d parameter defines the time delay between the detection and the successive signaling of the alarm. When [i3F = dor]: this is the delay to activate door open alarm.

	Label	Value	Description	Range	Notes
ŤŤ	nPS	15	Number of pressure switch activations before lock	0 to 15	Number of pressure switch activation, during the d1d, d2d and d3d interval, before signaling the alarm event [i1F, i2F or i3F = PAL]. If the nPS activation in the d1d, d2d or d3d time is reached, switch off and on the instrument to restart normal regulation.
ŤŤ	OdC	F-C	Compressor and fan status with door open	no; FAn; CPr; F-C	no = normal; Fan = Fan OFF; CPr = Compressor OFF; F_C = both Compressor and Fan OFF
ŤŤ	rrd	15	Output restart delay with door open	0 to 255min	The outputs stopped by the OdC parameter can restart after the rrd time.
				ENERGY SAVING	
Ø)	ESP	P1	Energy saving probe selection	nP; P1; P2; P3; P4; P6; tEr	-
<i>\$</i>)	HES	0	Temperature increasing during Energy Saving	[-54°F to 54°F] [-30.0°C to 30.0°C]	Sets the increasing value of the setpoint during the Energy Saving cycle.
<i>\$</i>)	PEL	nU	Energy saving activation when Light or/and AUX are switched OFF	nU(0); LIG(1); AUS(2); LEA(3)	Energy saving enabled when: LiG: light switched OFF AUS: AUX switched OFF LEA: both light and AUX switched OFF nU: function not used
				LAN MANAGEMENT	
얳	LMd	Y	Defrost Synchronization	n; Y	 n = the section does not send a global defrost command. Y = the section sends a command to start defrost to other controllers.
铿	dEM	Y	Defrost end Synchronization	n; Y	 n = the end of the LAN defrosts are independent. Y = the end of the LAN defrosts are synchronized.
悭	LSP	n	LAN setpoint Synchronization	n; Y	$\begin{array}{l} \textbf{n} = \text{the setpoint value is modified only in the} \\ \text{local section.} \\ \textbf{Y} = \text{the section setpoint, when modified, is} \\ \text{updated to the same value on all the other} \\ \text{sections.} \end{array}$
铿	LdS	n	LAN Display Synchronization (temperature sent via LAN)	n; Y	 n = the setpoint value is modified only in the local section. Y = the value displayed by the section is sent to all the other sections.
얳	LOF	n	LAN ON/OFF Synchronization	n; Y	This parameter indicates if the ON/OFF command of the section will act also on all the other sections: n = the ON/OF command acts only in the local section. Y = the ON/OFF command is sent to all the other sections.

	Label	Value	Description	Range	Notes
얱	LLi	Y	LAN Light Synchronization	n; Y	This parameter indicates if the light command of the section will act also on all the other sections: n = the light command acts only in the local section. Y = the light command is sent to all the other sections.
얱	LAU	n	AUX Synchronization	n; Y	This parameter indicates if the AUX command of the section will act also on all the other sections: n = the light command acts only in the local section. Y = the light command is sent to all the other sections.
얱	LES	n	Energy Saving Synchronization	n; Y	This parameter indicates if the energy saving command of the section will act also on all the other sections: n = the Energy Saving command acts only in the local section. Y = the Energy Saving command is sent to all the other sections.
얱	LSd	n	Remote probe displaying	n; Y	This parameter indicates if the section has to display the local probe value or the value coming from another section: n = the displayed value is the local probe value. Y = the displayed value is from another section (which has parameter LdS = Y).
얳	LPP	n	Pressure probe through the LAN	n; Y	 n = the value of pressure probe is read from the local probe. Y = the value of pressure probe is sent via LAN.
알	LCP	n	Probe 4 through the LAN	n; Y	
얳	StM	n	Cooling request from the LAN enables compressor relay	n; Y	 n = not used. Y = a generic cooling request from the LAN activates the solenoid valve connected to compressor relay.
얳	ACE	n	Cooling request from the LAN enable even if compressor is stopped by door switch	n; Y	 n = not used. Y = a generic cooling request from the LAN activates the solenoid valve connected to compressor relay.
			PROBE CONFI	GURATION NTC ($10K\Omega a 25^{\circ}C$), PtC (8	806 Ω a 0°C)
₽	P1C	ntC	P1 configuration	nP; PtC; ntC; CtC; PtM	nP = not present; PtC = Ptc; ntC = ntc; CtC = ntc US; PtM = Pt1000
镹	Ot	0	P1 calibration	[-12.0°C to 12.0°C]	Allows possible offset of the thermostat probe to adjust.
镹	P2C	CtC	P2 configuration	nP; PtC; ntC; CtC; PtM	nP = not present; PtC = Ptc; ntC = ntc; CtC = ntc US; PtM = Pt1000

	Label	Value	Description	Range	Notes
肉	oE	0	P2 calibration	[-12.0°C to 12.0°C]	Allows possible offset of the evaporator probe to adjust.
镹	P3C	nP	P3 configuration	nP; PtC; ntC; CtC; PtM	nP = not present; PtC = Ptc; ntC = ntc; CtC = ntc US; PtM = Pt1000
镹	03	0	P3 calibration	[-12.0°C to 12.0°C]	Allows possible offset of the probe 3 to adjust.
₽	P4C	nP	P4 configuration	nP; PtC; ntC; CtC; PtM; LAN	nP = not present; PtC = Ptc; ntC = ntc; CtC = ntc US; PtM = Pt1000; LAN = value received from master
镹	04	0	P4 calibration	[-12.0°C to 12.0°C]	Allows possible offset of the probe 4 to adjust.
Ø	P5C	5Vr	P5 configuration	nP; PtC; ntC; CtC; PtM; 420; 5Vr; LAN	nP = not present; PtC = Ptc; ntC = ntc; CtC = ntc US; PtM = Pt1000; 420 = 4 to 20mA; 5Vr = 0 to 5V ratiometric; LAN = value received from master
镹	05	0	P5 calibration	[-12.0°C to 12.0°C]	Allows possible offset of the probe 5 to adjust.
镹	P6C	CtC	P6 configuration	nP; PtC; ntC; CtC; PtM	nP = not present; PtC = Ptc; ntC = ntc; CtC = ntc US; PtM = Pt1000.
镹	06	0	P6 calibration	[-12.0°C to 12.0°C]	Allows possible offset of the probe 6 to adjust.
				SERVICE	
	CLt		ON/OFF percentage (C.R.O.)	(read only)	Shows the effective cooling time calculated by XM600 during regulation (cooling time percentage).
	tMd		Time remaining before the next defrost activation (only for interval defrost)	(read only)	Shows the time before the next defrost when interval defrost is selected.
	LSn				
		Auto	Number of devices in the LAN	1 to 8 (read only)	LAN.
	LAn	Auto Auto	List of address of the LAN	1 to 8 (read only) 1 to 247 (read only)	Identifies the device address (1 to LSn) inside the local network of multiplexed cabinet controller.
	LAn Adr	Auto Auto 1	Number of devices in the LAN List of address of the LAN devices MODBUS address	1 to 8 (read only) 1 to 247 (read only) 1 to 247	Shows the number of sections available in the LAN. Identifies the device address (1 to LSn) inside the local network of multiplexed cabinet controller. Identifies the device address when connected to a MODBUS compatible monitoring system.
	LAn Adr br	Auto Auto 1 96	Number of devices in the LAN List of address of the LAN devices MODBUS address Baud rate	1 to 8 (read only) 1 to 247 (read only) 1 to 247 96, 192	Shows the number of sections available in the LAN. Identifies the device address (1 to LSn) inside the local network of multiplexed cabinet controller. Identifies the device address when connected to a MODBUS compatible monitoring system. Baud rate selection.
	LAn Adr br rEL	Auto Auto 1 96 2.5	Number of devices in the LAN List of address of the LAN devices MODBUS address Baud rate Firmware release	1 to 8 (read only) 1 to 247 (read only) 1 to 247 96, 192 (read only)	Shows the number of sections available in the LAN. Identifies the device address (1 to LSn) inside the local network of multiplexed cabinet controller. Identifies the device address when connected to a MODBUS compatible monitoring system. Baud rate selection. Microprocessor firmware release.
	LAn Adr br rEL Ptb	Auto Auto 1 96 2.5	Number of devices in the LAN List of address of the LAN devices MODBUS address Baud rate Firmware release Parameter table	1 to 8 (read only) 1 to 247 (read only) 1 to 247 96, 192 (read only) (read only)	Shows the number of sections available in the LAN. Identifies the device address (1 to LSn) inside the local network of multiplexed cabinet controller. Identifies the device address when connected to a MODBUS compatible monitoring system. Baud rate selection. Microprocessor firmware release. Shows the original code of the parameter map.

Visit our website at copeland.com/en-us/products/controls-monitoring-systems for the latest technical documentation and updates. For Technical Support call 833-409-7505 or email ColdChain.TechnicalServices@Copeland.com

The contents of this publication are presented for informational purposes only and they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. Copeland reserves the right to modify the designs or specifications of such products at any time without notice. Responsibility for proper selection, use and maintenance of any product remains solely with the purchaser and end-user. ©2024 Copeland is a trademark of Copeland LP.

