

Making Sense Webinars

Making Sense Webinars

Emerson and Our Partners Giving Insight on the Three Most Important Issues in Refrigeration

Fault			
Compressor Trips			
Pressure Switch or Thermostat Cycling			- 1
Discharge Pressure		A A A A A A A A A A A A A A A A A A A	11
Locked Rotor			
Long run Time			
Low Voltage			
Low Oil Pressure			
Missing & Revers			
Welded Contacto			
Motor Trip Open Circuit	N A I •		
	Making		
High Discharge T	DINAN		
		of the application of	
1,200	ODCO	of the application of	
	ense	of the application of electronics to improve	
₹ ₈₀₀ _		operational visibility.	
600			

	Compressor Failure
CURRENT	XAlert 2 nd Alert 1 st Alert 1

05 Feb 2 09 Fe

Current sensing

Demand

> Algorithm

Presented By:

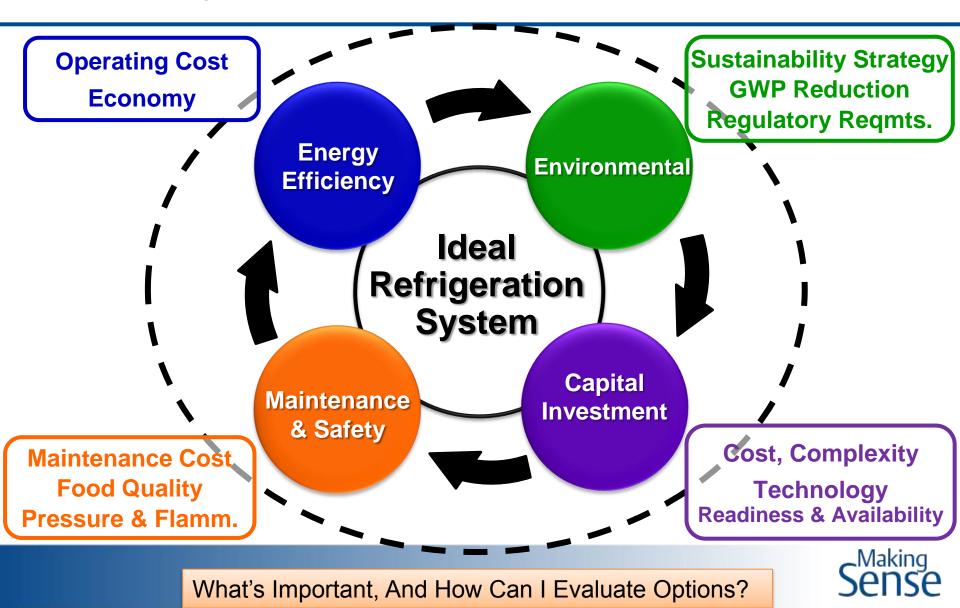
Mike Saunders

Director of End User Technical Sales and Support *Emerson Climate Technologies*

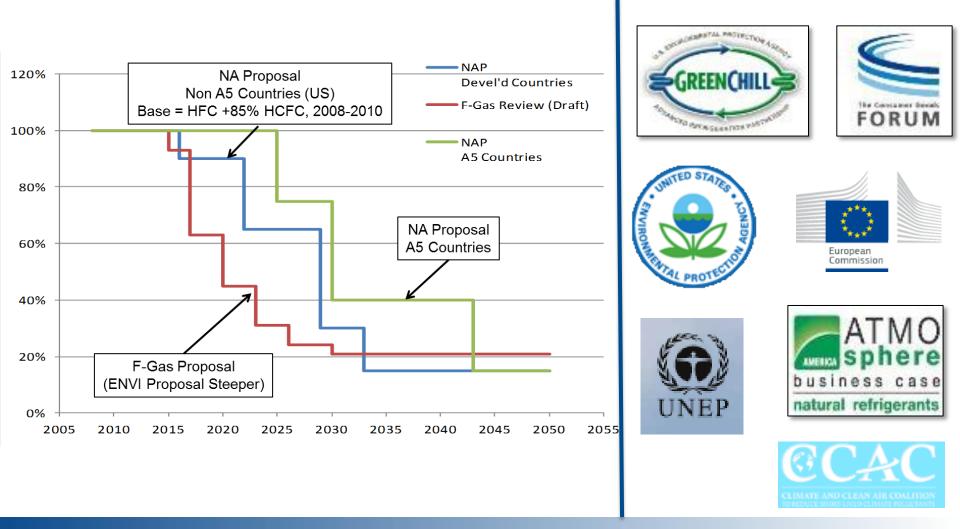
Autumn Nicholson

Senior Sales Engineer Emerson Climate Technologies

Agenda

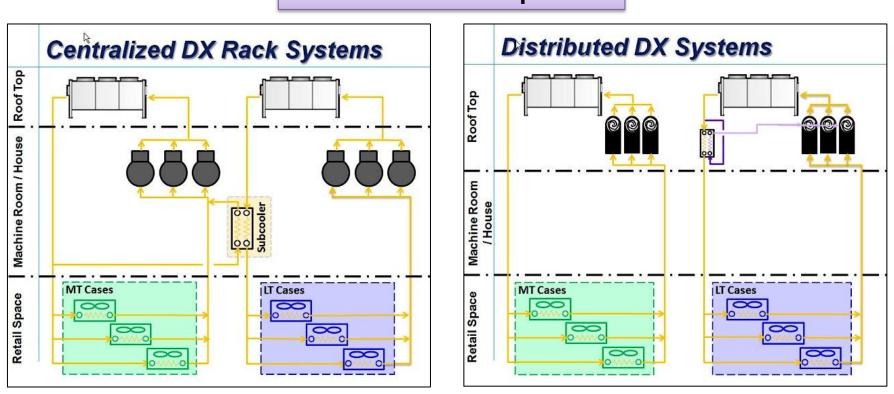

Background

• What's Important When Selecting Compressors?


- Mid-Point/Dew Point Differences
- Evaporator vs. Compressor Capacity
- Mechanical Subcooling and Vapor Injection
- EER vs. AEER
- Annual Energy Analysis

Industry Market Drivers

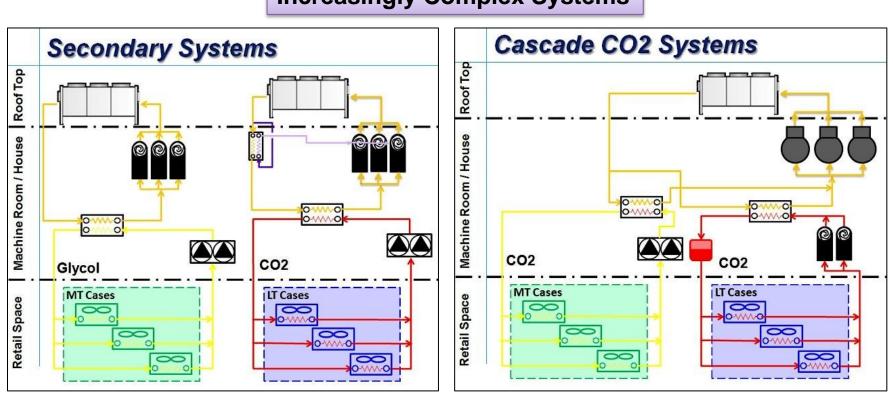
HFC Phase-Down Proposals: North American Proposal (NAP) and European F-Gas



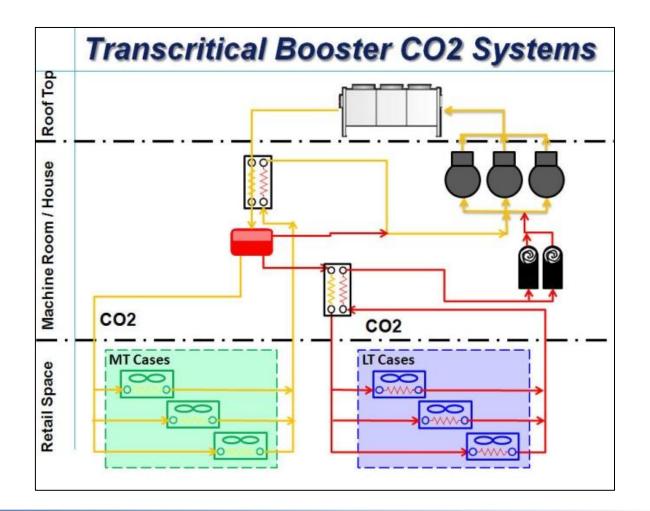
Will Potential Regulation Drive Me to More or Less Energy-Efficient Options?

Lower GWP Refrigerant Landscape

Options for	New and Exi	sting Applica	ations	Refrigerant	GWP
	117 Page 1			R404A	3922
	STR	3 7 2	- 3	R407A	2107
				R407F	1825
	407F	507	Propane	R134a	1430
				R410A	2088
				N40	<1500
		-		XP40	<1500
		The second		XP10	<600
		A P		N13	<600
	REFRIGERANT			L40	<300
404A	1344a United States States	ATOAL	CO2	DR7	<300
		- 2 ·		R1234yf	<4
				Propane	3
				CO ₂	1
	Which	n Refrigerant Is	Right For Me	?	Sense


Increasing Variations in System Architectures

Traditional Direct Expansion

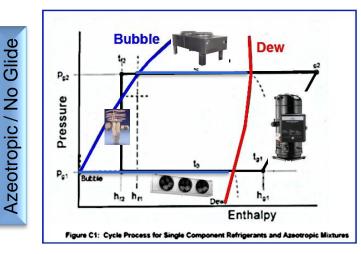

Increasing Variations in System Architectures

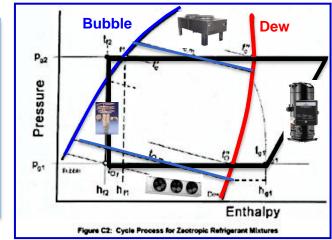
Increasingly Complex Systems

Increasing Variations in System Architectures

System Choices And Complexity Are Increasing

Makino

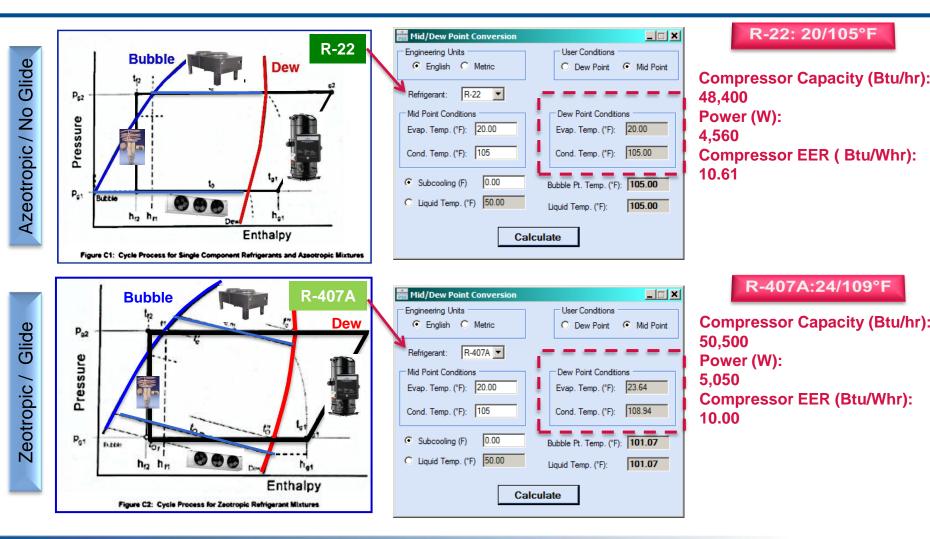

Background


What's Important When Selecting Compressors?

- Mid Pt/Dew Pt Differences
- Evaporator Vs Compressor Capacity
- Mechanical Subcooling and Vapor Injection
- EER vs AEER
- Annual Energy Analysis

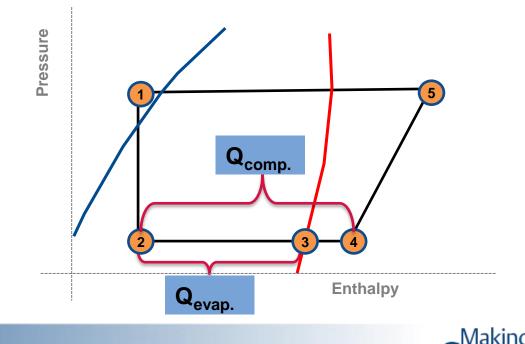
Mid-Point vs. Dew Point

Per AHRI Standards, Compressors Are Rated Based on Dew Point Pressure/ Temperatures


- When there is <u>no</u> glide and assuming little/no pressure drop, the temperature at mid-point equals temperature at dew point
- Mid-Point = Average Coil Temperature
 - *T↓mid,cond* =*T↓dew,cond* + *T↓bubble,cond* /2
 - *T↓mid,evap* =*T↓evap, in* + *T↓evap,out* /2

http://www.emersonclimate.com/makingsensewebinars

Zeotropic / Glide


Example: R-22 vs. R-407A Compressor Performance

Evaporator Capacity vs. Compressor Capacity

- Evaporator capacity or Net Refrigeration Effect (NRE) is the available effective cooling generated from the system
- Compressor capacity is the cooling capacity generated from the evaporator capacity as well as the heat gained in the line between the exit of the evaporator to suction of the compressor

Evaporator Capacity vs. Compressor Capacity

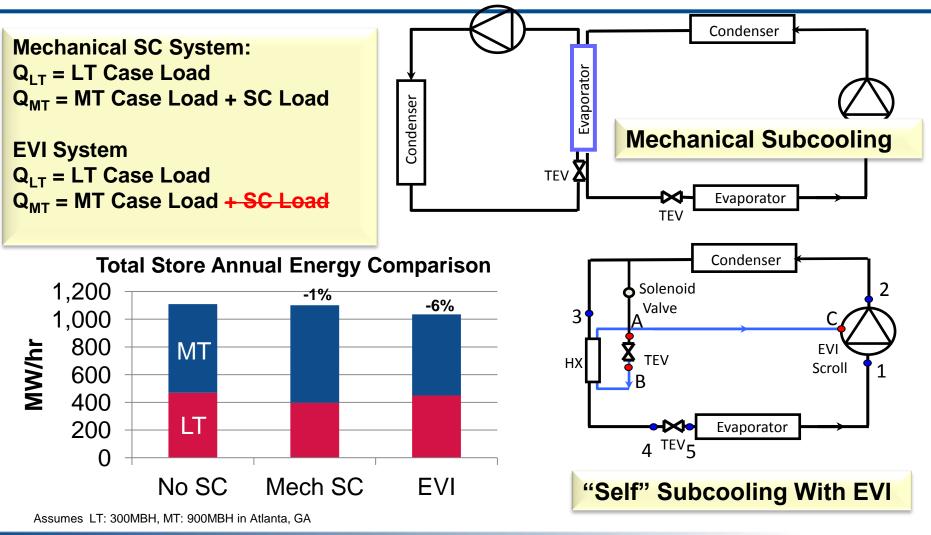
$$\dot{Q} = \dot{m} (h_{out,vap} - h_{in,liq})$$

- When compressor superheat* is increased, h_{out,vap} ↑, m ↓ compressor capacity increases and evaporator capacity decreases
- When compressor superheat decreases, h_{out,vap} ↓, m ↑ compressor capacity <u>decreases</u> and evaporator capacity <u>increases</u>

Traditionally, Compressor Selections Are Based on 65°F Return Gas and Compressor Capacity at Dew Point With Enough "Safety Factor" to Ensure There Is Adequate Net Refrigeration Effect for the Required Load

*Compressor Superheat (SH) is often considered in terms of Compressor Return Gas Temperature (RGT) where RGT = Evap. Temp. + SH

Example: Capacity at Design vs. Application


- Required Load: 40,000 Btu/hr
- Design Condition: R-407A, +20/105/65RG/0SC/10eSH °F

Model	HP	Compressor Capacity (Btu/hr)	Compressor EER (Btu/Wh)	Capacity		Total Req'd Load (%)	Cond. Heat Rejection (Btu/hr)	
ZB45KCE-TFD	6.00	47,800	10.04	42,700	8.97	119.5	64,046	

Condition 407A, ZB45KCE-TFD 20/105/65RG/10eSH °F	Comp. Cap. (MBH)	Vs. Design Load	Evap. Cap. (MBH)	Vs. Design Load
Dew Point Design	47.8	119%	42.7	107%
Mid-Point Design	50.5 🏌	126%	45.3 👔	113%
45RG/10eSH (Lower RG)	49.6 👃	124%	47.7 🏌	119%
ZB38KCE-TFD (Smaller Comp)	43.3	108%	41.6	104%

Sense Sense

Subcooling

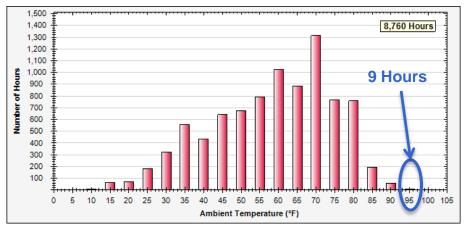
Background

- What's Important When Selecting Compressors?
 - Mid Pt/Dew Pt Differences
 - Evaporator Vs Compressor Capacity
 - Mechanical Subcooling and Vapor Injection
- EER vs AEER
- Annual Energy Analysis

EER vs. AEER

- EER (Energy Efficiency Ratio) is the measure of compressor efficiency at a single rating condition found by dividing the capacity by input power at that rating condition
 - Often, the rating condition is based on design for "worst case" condition for the system/location
- AEER (Annual Energy Efficiency Ratio) is a weighted average performance for a refrigeration system, using varying condensing temperatures tied to the actual weather data for a location

EER vs. AEER Example: Atlanta, Georgia


Design Ambient

	2013 AS	HRAE Har	ndbook - I	Fundament	als (IP)									©.	2013 ASH	RAE, Inc.	
							ATLANT	A MUNIC	IPAL, G	A, USA					WMO#:	722190	
		33.64N		84.43W	Elev	1027	StdF	14.16		Time Zone:	-5 (NAE)		Period	86-10	WBAN:	13874	
	Annual Heating and Humidification Design Conditions																
1	Humidification DP/MCDB and HR Coldest month WS/MCDB MCWS/PCWD							T									
	Coldest Month	Heatir	ng DB		99.6%			99%			4%		%		6% DB		
	Month	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD	1	
	(a)	(b)	(0)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)		
(1)	1	21.5	26.4	4.2	7.1	28.6	9.1	9.1	32.2	24.9	39.9	23.5	40.0	11.9	320		0
Annual Cooling, Dehumidification, and Enthalpy Design Conditions										1							
1		Hottest			Cooling	DB/MCWB					Evaporatio	n WB/MCDE			MCWS	/PCWD	1
	Hottest Month	Month	0	.4%		1%	2	!%	0.	4%		1%		%	to 0.4		
	Month	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	
	(a)	(b)	(c)	(d)	(e)	(1)	(g)	(h)	(i)	(i)	(k)	(1)	(m)	(n)	(0)	(P)	
(2)	7	17.0	93.9	74.2	91.7	73.9	89.8	73.5	77.3	88.5	76.4	86.7	75.4	85.0	8.7	300	(2
[Dehumidific		ICDB and HI	R		Enthalpy/MCDB							Hours	1
		0.4%			1%			2%			4%		%		%	8 to 4 &	
l	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	55/69	J
	(a) 74.3	(b) 133.1	(°) 81.3	(d) 73.3	(e) 128.7	(f) 80.2	(g) 72.6	(h) 125.5	(i) 79.6	(j) 41.4	(k) 88.5	(1) 40.4	(m) 86.7	(n) 39.5	(°) 85.6	(P) 800	
(3)					120.7	80.Z	72.0	125.5	79.6	41.4	66.5	40.4	00.7	39.5	05.0	800	(3
	Extreme A	Annual Desi	gn Conditi	ons													
				Extreme		Extreme	Annual DB		-		n-Year Re	eturn Period	Values of F	xtreme DB			1
		reme Annual		Max		ean		deviation		years) years		years	n=50	years	
	1%	2.5%	5%	WB	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	1
	(a)	(b)	(0)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
(4)	21.5	19.0	17.1	82.4	14.1	96.7	4.4	3.3	10.9	99.1	8.3	101.0	5.8	102.9	2.6	105.3	(4

streme Annual Design Conditions Extreme Extreme Annual DB Extreme Annual WS Max Mean Standard deviation 1% 2.5% 5% WB Min Max Min Max (a) (b) (c) (d) (e) (f) (g) (h) 21.5 19.0 17.1 82.4 14.1 96. 4.4 3.3

2013 ASHRAE Handbook Fundamentals (IP)

Annual Ambient

Weather Data Based on Typical Metrological Year (National Solar Radiation Database, Years: 1961 – 1990).

Vlakino

https://www.ashrae.org/news/2014/revisions-to-climate-data-standard-from-ashrae-include-new-climate-zone-climatic-data

Estimated kWh/yr for 15MBH Design R-404A, +20/112/40RG/0SC/10eSH °F

EER

Results	
Compressor Capacity (Btu/hr):	15,950
Net Refrigeration Effect (Btu/hr):	15,150
Power (W):	2,050
Compressor EER (Btu/Wh):	7.78
Evaporator EER (Btu/Wh):	7.39

AEER

Output Annual (Hours): Evap. Capacity (Btu/hr):	8,760 15,150	Annual Energy Used by Primary Comp. (kWh): Annual Energy Used by Mech. Subcooling	9,445 0
Evap. Capacity Over Design (%):	1.0	Comp. (kWh):	
Overall AEER (Btu/Wh):	13.91	Annual Energy Used by Evap. Fan (kWh):	0
Design Point		Annual Energy Used by Cond. Fan (kWh):	0
System Capacity (Btu/hr):			
System capacity (Diam).	15,150	Total Annual Energy Used (kWh):	9,445
System EER (Btu/Wh):	15,150 7.39	Total Annual Energy Used (kWh): Total Annual Energy Cost (\$):	9,445 756

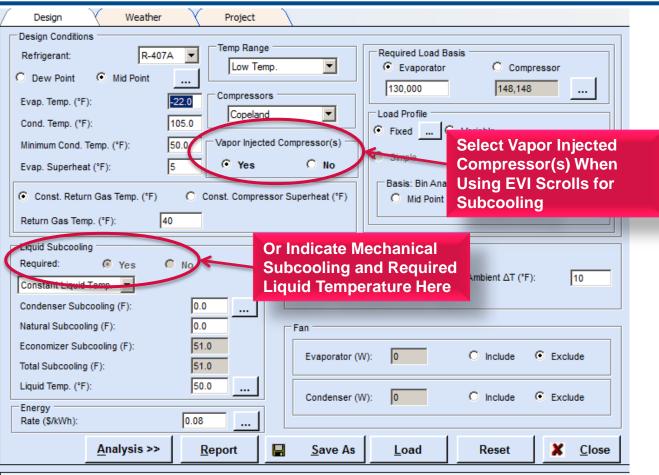
- Atlanta, GA
- Fixed Load
- Min. Cond 70°F
- Evaporator Based

File Options View Tools W	Design V Weather V Project
	Design Conditions
Main Menu :: Annual Energy Analysis Project Details Analysis	Refrigerant: R-407A Image O Dew Point Mid Point Image Low Temp. Image Low Temp. Image Low Temp. Image Evap. Temp. (*F): Image Cond. Temp. (*F): Image Minimum Cond. Temp. (*F): Image Evap. Superheat (*F): Image Const. Return Gas Temp. (*F) Const. Compressor Superheat (*F)
	Return Gas Temp. (°F): 40
	Liquid Subcooling Required:
	Natural Subcooling (F):
	Economizer Subcooling (F): 51.0 Total Subcooling (F): 51.0 Evaporator (W): 0 O Include Exclude
	Liquid Temp. (°F): 50.0 Condenser (W): 0 C Include © Exclude
	Energy Rate (\$/kWh): 0.08
Product Information	Analysis >> Report Save As Load Reset Close
Annual Energy Analysis Tools	Note: Choose Save button after entering Project Information, Selection of Weather City and specifications of Design Parameters. Next, choose Close button to close Project Details Window. Next, select Analysis from Main Screen to perform Annual Energy Calculations. You can proceed directly to Annual Energy Analysis without saving Project Details contents by selecting Analysis button.

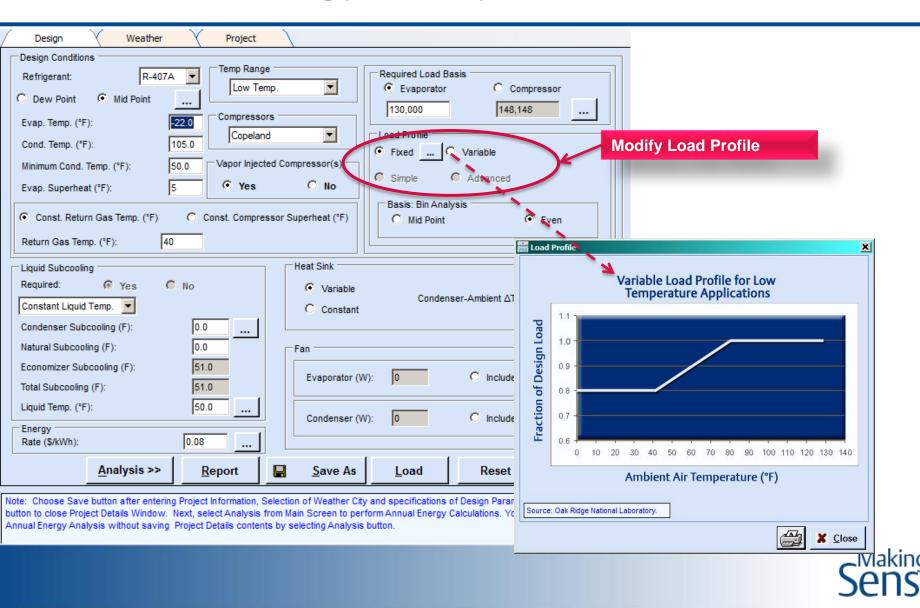
Vlakino

Date: February 17, 2014

Design V Weather V Project	
Design Conditions Temp Range Required Load Basis Refrigerant: R-407A Low T	
O Dew Point Mid Point Select "Mid-Point" for 148,148 Evap. Temp. (*F): 22.0 Compress Refrigerants With High 148,148 Cond. Temp. (*F): 105.0 Copela Glide (>2°F) Variable Minimum Cond. Temp. (*F): 50.0 Vapor Injected Compressor(s) © Fixed © Variable	
Evap. Superheat (*F): 5 • Yes No • Const. Return Gas Temp. (*F) • Const. Compressor Superheat (*F) • Mid Point • Evan	
Return Gas Temp. (°F): 40	
Liquid Subcooling Required:	
Natural Subcooling (F): 0.0 Economizer Subcooling (F): 51.0 Total Subcooling (F): 51.0	
Liquid Temp. (°F): 50.0 Condenser (W): 0 C Include © Exclude Rate (\$/kWh): 0.08	
Analysis >> Report Save As Load Reset X C	lose


Note: Choose Save button after entering Project Information, Selection of Weather City and specifications of Design Parameters. Next, choose Close button to close Project Details Window. Next, select Analysis from Main Screen to perform Annual Energy Calculations. You can proceed directly to Annual Energy Analysis without saving Project Details contents by selecting Analysis button.

Design V Weather V Project	
Design Conditions	
Refrigerant: R-407A Temp Range Pequired Load Basis	Required Load Basis,
C Dew Point © Mid Point Low Temp. C Evaporator C Compressor	Matches Compressors
Evap. Temp. (°F):	Based on Evaporator or
Cond. Temp. (*F):	Compressor Capacity
Minimum Cond. Temp. (*F): 50.0 Vapor Injected Compressor(s)	
Simple C Advanced	
Evap. Superheat (*F): 5 C Yes C No	
Const. Return Gas Temp. (°F) Const. Compressor Superheat (°F) Grant France Strengthead (°F)	
Return Gas Temp. (*F): 40	
Liquid Subcooling Heat Sink	
Required: Yes No Variable	
Constant Liquid Temp. ▼ Condenser-Ambient ΔT (*F): 10	
Condenser Subcooling (E):	
Economizer Subcooling (F): 51.0 Evaporator (W): 0 O Include O Exclude	
Total Subcooling (F): 51.0	
Liquid Temp. (°F): 50.0 Condenser (W): 0 C Include © Exclude	
Energy	
Rate (\$/kWh): 0.08	
<u>A</u> nalysis >> <u>R</u> eport <u>S</u> ave As <u>L</u> oad Reset <u>X</u> <u>C</u> lose	


Note: Choose Save button after entering Project Information, Selection of Weather City and specifications of Design Parameters. Next, choose Close button to close Project Details Window. Next, select Analysis from Main Screen to perform Annual Energy Calculations. You can proceed directly to Annual Energy Analysis without saving Project Details contents by selecting Analysis button.

Design V Weather V Project	
Design Conditions Refrigerant: R-407A Temp Range Required Load Basis O Dew Point Mid Point Image Image Required Load Basis Evap. Temp. (*F): 22.0 Compressors Image Image Cond. Temp. (*F): 105.0 Copeland Image Image Image Minimum Cond. Temp. (*F): 50.0 Vepor Inje Minimum Condensing Image Evap. Superheat (*F): 5 Yes Temperature © Const. Return Gas Temp. (*F): 40 Mid Point Mid Point	C Compressor 148,148 tiable dvanced C Even
Constant Liquid Temp. Constant Condenser Subcooling (F): 0.0 Natural Subcooling (F): 0.0 Economizer Subcooling (F): 51.0 Total Subcooling (F): 51.0 Liquid Temp. (*F): 50.0	umbient ΔT (*F): 10 C Include
Energy 0.08 Analysis >> Report Save As Load	Reset X Close

Note: Choose Save button after entering Project Information, Selection of Weather City and specifications of Design Parameters. Next, choose Close button to close Project Details Window. Next, select Analysis from Main Screen to perform Annual Energy Calculations. You can proceed directly to Annual Energy Analysis without saving Project Details contents by selecting Analysis button.

Note: Choose Save button after entering Project Information, Selection of Weather City and specifications of Design Parameters. Next, choose Close button to close Project Details Window. Next, select Analysis from Main Screen to perform Annual Energy Calculations. You can proceed directly to Annual Energy Analysis without saving Project Details contents by selecting Analysis button.

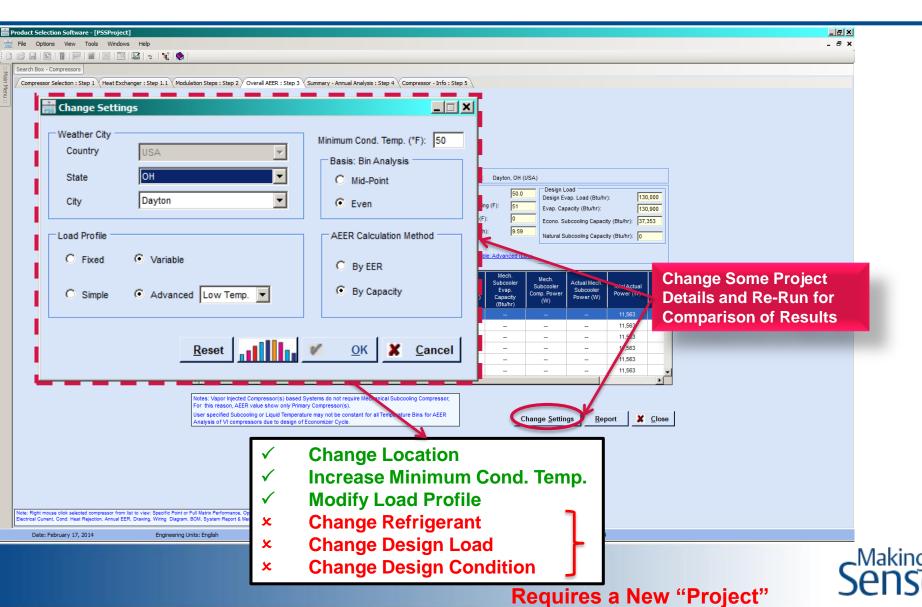
Design V Weather V Project	
Design Conditions Refrigerant: R-407A O Dew Point Mid Point Evap. Temp. (*F): 22.0 Cond. Temp. (*F): 105.0 Minimum Cond. Temp. (*F): 50.0 Evap. Superheat (*F): 5 Image: Const. Return Gas Temp. (*F): 6 Const. Return Gas Temp. (*F): 40	Required Load Basis © Evaporator Compressor 130,000 148,148 Load Profile © Fixed O Variable © Simple Advanced Basis: Bin Analysis O Even
Liquid Subcooling Required: Yes No Constant Liquid Temp. Condenser Subcooling (F): Natural Subcooling (F): Constant Liquid Temp. Fan Economizer Subcooling (F): 51.0 Total Subcooling (F): 51.0	Condenser-Ambient ΔT (°F): 10 Adjust Condenser- Ambient TD
Liquid Temp. (°F): 50.0 Condenser Energy Rate (\$/kWh): 0.08 Condenser Analysis >> Report Save As	

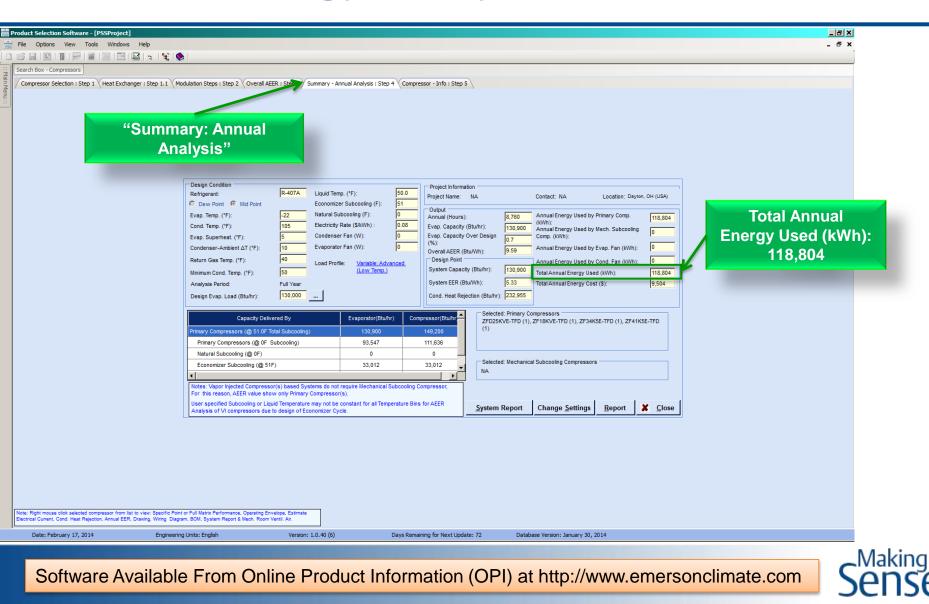
Note: Choose Save button after entering Project Information, Selection of Weather City and specifications of Design Parameters. Next, choose Close button to close Project Details Window. Next, select Analysis from Main Screen to perform Annual Energy Calculations. You can proceed directly to Annual Energy Analysis without saving Project Details contents by selecting Analysis button.

Design Weather	Rroject	Choose Weather Data
Design Conditions		Here
Refrigerant: R-407A 💌	Temp Range	Required Load Dasis
C Dew Point Mid Point	Low Temp.	Evaporator Compressor
	Compressors -	130,000 148,148
Evap. Temp. (°F):	Copeland	Load Profile
Cond. Temp. (°F): 105.0		Fixed C Variable
Minimum Cond. Temp. (°F): 50.0	Vapor Injected Co	
Evap. Superheat (°F): 5	Yes	C No Simple C Advanced
		Basis: Bin Analysis
Const. Return Gas Temp. (°F)	Const. Compressor S	Superheat (°F) C Mid Point © Even
Return Gas Temp. (°F): 40		
		Heat Sink
Liquid Subcooling Required:		
		Condenser-Ambient ΔT (*F): 10
Constant Liquid Temp.		C Constant
Condenser Subcooling (F): 0.0		
Natural Subcooling (F): 0.0		Fan
Economizer Subcooling (F): 51.	.0	
Total Subcooling (F): 51.	.0	Evaporator (W): 0 O Include O Exclude
Liquid Temp. (°F): 50.	.0	
		Condenser (W): 0 C Include C Exclude
Energy Rate (\$/kWh): 0.08		
<u>A</u> nalysis >> <u>F</u>	Report	Save As Load Reset X Close

Note: Choose Save button after entering Project Information, Selection of Weather City and specifications of Design Parameters. Next, choose Close button to close Project Details Window. Next, select Analysis from Main Screen to perform Annual Energy Calculations. You can proceed directly to Annual Energy Analysis without saving Project Details contents by selecting Analysis button.

Design Weather Project		
Weather City		
Country: USA State: OH City: Dayton	Latitude: Longitude: Min. Temp. (°F): Max. Temp. (°F):	84 1W 39 54N -5 91
Analysis Period Full Year Start Date (MM/DD): End Date (MM/DD): Dec y 31 y	Time Frame 24 Hr/Day Start: End:	C User Defined
After Project I Finalized, Clice "Analysis" Analysis >> Report Save	:k	Reset X Close


Note: Choose Save button after entering Project Information, Selection of Weather City and specifications of Design Parameters. Next, choose Close button to close Project Details Window. Next, select Analysis from Main Screen to perform Annual Energy Calculations. You can proceed directly to Annual Energy Analysis without saving Project Details contents by selecting Analysis button.



oduct Selection Software - [File Options View Tool																			_ 8 3
		р																	_ 8 :
i 🖬 i 🔛 i 📲 i 🐺 i 🗃	📓 🖬 📓	s 🐮 🕻	2																
earch Box - Compressors																			
Compressor Selection : Step 1	Heat Exchanger :	Step 1.1 M	1odulation_Steps : Step	2															
Results			- 1	1															
‡	Compress	or 🌈			Evaporator	Return	Total	‡ _{Ph.} ‡	Current	RLA	LRA Total	Req'd Load	Cond	d. Heat	Subcooli	ng 🗘 (Comp. AEER	‡	‡
Model Refrig.	HP Capacity (Btu/hr)			Capacity (Btu/hr)	EER (Btu/Wh)	Gas Temp. S (*F)	ubcooling Volts (F)	Ph.	Hz (Amps)	(MCC/1.4) (Amps)	(Amps)	(%)	Rejectio	on (Btu/hr)) Capacity (Bt	u/hr)	(Btu/Wh)	Modulation	Notes
ZF13KVE-TFD R-407A	NA 16,90)	558	14,900	4.92	40.0	51.0 460	3	60 5.30	8.9	62.0	13	27	7,241	3,750		16.55	EVI	-
ZF18KVE-TFD R-407A	NA 25,00	D	5.77	22,000	5.08	40.0	51.0 460		60 7.20	9.4	70.0	19.2	39	9,778	5,542		17.13	EVI	
ZF25KVE-TFD R-407A	7.50 31,10	0	5.98	27,200	5.23	40.0	51.0 460	3	60 8.20	11.9	99.0	23.9	48	8,848	6,873		17.67	EVI	-
ZF34K5E-TFD R-407A	NA 41,50	D	6.20	36,400	5.44	40.0	51.0 460	3	60 12.90	16.4	100.0	31.9	64	4,333	9,183		18.06	EVI	
ZF41K5E-TFD R-407A	NA 51,60	0	6.20	45,300	5.44	40.0	51.0 460	3	60 15.95	17.9		39.7	79	9,996	11,414		18.05	EVI	-
ZF49K5E-TFD R-407A	NA 61,90		6.23	54,300	5.47	40.0	51.0 460		60 16.15	20.0		<mark>4</mark> 7.6		5,791	13,696		18.14	EVI	-
ZFD13KVE-TFD R-407A	NA 16,90		5.58	14,900	4.92	40.0	51.0 460		60 5.30	8.9		13		7,241	3,750		16.55	EVI + Digital	-
ZFD18KVE-TFD R-407A	NA 25,00		5.77	22,000	5.08	40.0	51.0 460		60 7.20	9.4		19.2		9,778	5,542		17.13	EVI + Digital	
FD25KVE-TFD R-407A	NA 31,10	,	5.98	27,200	5.23	40.0	51.0 460	3	60 8.20	11.9	99.0	23.9	48	8,848	6,873		17.67	EVI + Digital	
The Ste	ps"		Odulatio		Mindow														
Ste	PS" Ready F	ά"Μα	Print <u>Click herr</u>	e to view Search V Project <u>D</u> etails	<u>V</u> entil. Air	·	el. Report			Subcooling	1				RIA				
Ste	PS" Ready F	eset A	Print Click here	e to view Search V	<u>V</u> entil. Air	Comp. S Evaporator EER (Btu/Wh)		Cond Rejection	. neat	Subcooling Capacity (Btu/hr)	Comp. AEER (BtuWh)	Volts	Ph.		Irrent RLA MCC/1.4 (Amps)	LRA (Amps)	Modulation	Notes	Application
Step S	Ready	eset	Print Click here	e to view Search V Project Details	Ventil. Air	Evaporator	Total Reg'd Load	Rejection	. neat	Capacity		Volts 460		HZ (A	MCC/1.4	(Amps)	Modulation EVI + Digi	Notes	
Step Step Capacity Step Up Step Up Step Up Step Up Step Up Step Up Step Up Step Up	Ready F Ready F Remove F tion Model	eset Save As	Print Click here Reset Compressor Capacity (Blufhr)	e to view Search V Project Details Compressor EE (Btu/Wh)	R Evaporator Capacity (Btu/hr)	Evaporator EER (Btu/Wh)	Total Req'd Load	Rejection 48,	n (Btu/hr)	Capacity (Btu/hr)	(Btu/Wh)		3	HZ (A	(Amps) (Amps)	(Amps)			Low Temp, Econo
Ste Ste	Ready F Remove F tion ZFD25KVE-TH ZF18KVE-TF ZF34K5E-TFI	eset Save As P NA NA	Print Click here Reset Compressor Capacity (Blu/hr) 31,100 25,000 41,500	e to view Search V Project Details Compressor EE (BtuWh) 5.98 5.77 6.20	Ventil. Air R Evaporator Capacity (Btu/hr) 27,200 22,000 36,400 36,400	Evaporator EER (Btu/Wh) 5.23 5.08 5.44	Total Req'd Load (%) 20.9 16.9 28.0	Rejection 48, 39, 64,	n (Btu/hr) 848 778 333	Capacity (Btu/hr) 6,873 5,542 9,183	(Btu/Wh) 17.67 17.13 18.06	460 460 460	3 3 3	HZ (A 60 3 60 7 60 1	Intern MCC/1.4 (Amps) 3.20 11.9 7.20 9.4 2.90 16.4	(Amps) 99.0 70.0 100.0	EVI + Digi EVI EVI	-	Low Temp, Econo Low Temp, Econo Low Temp, Econo
Compressors for AEER Calcula Compressors for AEER Calcula Capacity Step Up Step Up Down 1 2 1	Ready F Remove f tion ZFD25KVE-TH ZF18KVE-TF	eset Save As P NA NA	Print Click here Reset	e to view Search V Project Details Compressor EE (Btu/Wh) 6.98 5.77	Ventil. Air R Evaporator Capacity (Btu/hr) 27,200 22,000	Evaporator EER (Btu/Wh) 5.23 5.08	Total Req'd Load (%) 20.9 16.9	Rejection 48, 39, 64,	. neat h (Btu/hr) 848 778	Capacity (Btu/hr) 6,873 5,542	(Btu/Wh) 17.67 17.13	460 460	3 3 3	HZ (A 60 3 60 7 60 1	Intent mps) MCC/1.4 (Amps) 3.20 11.9 7.20 9.4	(Amps) 99.0 70.0	EVI + Digi EVI		Low Temp, Econo Low Temp, Econo Low Temp, Econo
Ste → → Add Compressors for AEER Calcula Compressors for AEER Calcula Capacity Step Up Down 1 ♥ ↑ 1 ♥ ↑ 1 ♥ ↑	Ready F Remove F tion ZFD25KVE-TH ZF18KVE-TF ZF34K5E-TFI	eset Save As P NA NA	Print Click here Reset Compressor Capacity (Blu/hr) 31,100 25,000 41,500	e to view Search V Project Details Compressor EE (BtuWh) 5.98 5.77 6.20	Ventil. Air R Evaporator Capacity (Btu/hr) 27,200 22,000 36,400 36,400	Evaporator EER (Btu/Wh) 5.23 5.08 5.44	Total Req'd Load (%) 20.9 16.9 28.0	Rejection 48, 39, 64, 79,	. Heat n (Btu/hr) 848 778 333 996	Capacity (Btu/hr) 6,873 5,542 9,183 11,414	(Btu/Wh) 17.67 17.13 18.06	460 460 460	3 3 3	HZ (A 60 3 60 7 60 1	Intern MCC/1.4 (Amps) 3.20 11.9 7.20 9.4 2.90 16.4	(Amps) 99.0 70.0 100.0	EVI + Digi EVI EVI		Low Temp, Econo Low Temp, Econo Low Temp, Econo
Ste 1 ors a ⇒ + Add Compressors for AEER Calcula Compressors for AEER Calcula Capacity Step Up Down 1 → ↑ 1 → ↓ 1 → ↓	Ready F Remove F tion ZFD25KVE-TH ZF18KVE-TF ZF34K5E-TFI	eset Save As P NA NA	Print Click here Reset Compressor Capacity (Blu/hr) 31,100 25,000 41,500	e to view Search V Project Details Compressor EE (BtuWh) 5.98 5.77 6.20	Ventil. Air R Evaporator Capacity (Btu/hr) 27,200 22,000 36,400 36,400	Evaporator EER (Btu/Wh) 5.23 5.08 5.44	Total Req'd Load (%) 20.9 16.9 28.0	Rejection 48, 39, 64,	. Heat n (Btu/hr) 848 778 333 996	Capacity (Btu/hr) 6,873 5,542 9,183	(Btu/Wh) 17.67 17.13 18.06	460 460 460	3 3 3	HZ (A 60 3 60 7 60 1	Intern MCC/1.4 (Amps) 3.20 11.9 7.20 9.4 2.90 16.4	(Amps) 99.0 70.0 100.0	EVI + Digi EVI EVI		Low Temp, Econo Low Temp, Econo Low Temp, Econo
Ste 1 of 9	PS" Rendy F Remove tion CED25KVE-TH ZF18KVE-TFH ZF18KVE-TFH ZF14KSE-TFH	C "M eset G Save As HP D NA D NA D NA D NA Total	Print Click her Reset	e to view Search V Project Details Compressor EE (BtuWh) 5.98 5.77 6.20 6.20 6.08 noe, Operating Envelo	Yentil. Air R Evaporator (Bullhr) 27,200 22,000 36,400 45,300 130,900 pp. Estimate	Evaporator EER (BtuWh) 5.23 5.08 5.44 5.44	Total Reyd Load (%) 16.9 28.0 34.8	Rejection 48, 39, 64, 79,	. Heat n (Btu/hr) 848 778 333 996	Capacity (Btu/hr) 6,873 5,542 9,183 11,414	(Btu/Wh) 17.67 17.13 18.06	460 460 460	3 3 3	HZ (A 60 1 60 1	Intern MCC/1.4 (Amps) 3.20 11.9 7.20 9.4 2.90 16.4	(Amps) 99.0 70.0 100.0	EVI + Digi EVI EVI		Applicati Low Temp, Econo Low Temp, Econo Low Temp, Econo

duct Selection Software - [PSSProject]						
ile Options View Tools Windows						- 8 ×
3 🔜 🗈 👔 🐖 🗃 🗵 🛅 🗓	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Compressor Selection : Step 1 (Heat Exchange	ger : Step 1.1 Modulation Steps : Step 2 Ove	erall AEER : Step 3 \Summary - Annual Anal	ysis : Step 4 Compressor - Info : Step 5			
From "Modu	lation					
Steps", Sele	ct "Overall					
AEER"		IA Conta	t: NA Location			
				Dayton, OH (USA)		
	Refrigerant: C Dew Point C Mid	R-407A Annual (Hours):	8,760 Liquid Temp. (°F):	50.0 Design Evap. Load (Btu/hr):	130,000	
	Evap. Temp. (°F);			Lvap. Capacity (Diu/iii).	130,900	
	Cond. Temp. (*F):			Econo. Subcooming capacity (bit	u/hr): 37,353	
	Evap. Superheat (°F):	5 Condenser-Ambient	∆T (°F): 10 Overall AEER (Btu/W	n): 19.59 Natural Subcooling Capacity (Bt	tu/hr): 0	
		60V, 60Hz, 3 Ph Analysis Period:	Full Year Load Profile: Varia	ble: Advanced (Low		
			Total Comp Actual	Mech. Mech. Actual Mech. Tot		
	Ambient Air Bin Temp. (°F) (Hours)	Cond. Evap. Design Evap. Capa Temp. (°F) Load (Btu/hr) (Btu/hr)	City Subcooling Comp. Comp.	Evan Subcooler Subcooler IV	tal Actual Sut over (W) Cor	
			(F) Power (W) Power (W)	(Btu/hr) (W) Power (W)	Energ	
	-10 1	50 104,000 114,500			11,563	
	-5 19	50 104,000 114,500			11,563	
	0 60	50 104,000 114,500 50 104,000 114,500			11,563	
	10 156	50 104,000 114,500			11,563	
	15 292	50 104,000 114,500			11,563	
	•					
	Notes: Vapor Injected Cor	npressor(s) based Systems do not require N	lechanical Subcooling Compressor,			
	For this reason, AEER va	lue show only Primary Compressor(s). g or Liquid Temperature may not be constant		\sim		
	Analysis of VI compresso	ors due to design of Economizer Cycle.	for all temperature bins for ALER	Change <u>S</u> ettings <u>R</u> eport	Close	
						Demont Din Analysia
						Report Bin Analysis
					F	Results
					_	
Right mouse click selected compressor from list ical Current, Cond. Heat Rejection, Annual EER, I	to view: Specific Point or Full Matrix Performance, Opera Drawing, Wiring Diagram, BOM, System Report & Mech.	Room Ventil. Air.				
Date: February 17, 2014	Engineering Units: English	Version: 1.0.40 (6)	Days Remaining for Next Update: 72	Database Version: January 30, 2014		
						Con
						7411

Thank You!

Questions and Answers

DISCLAIMER

Although all statements and information contained herein are believed to be accurate and reliable, they are presented without guarantee or warranty of any kind, expressed or implied. Information provided herein does not relieve the user from the responsibility of carrying out its own tests and experiments, and the user assumes all risks and liability for use of the information and results obtained. Statements or suggestions concerning the use of materials and processes are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe on any patents. The user should not assume that all toxicity data and safety measures are indicated herein or that other measures may not be required.

