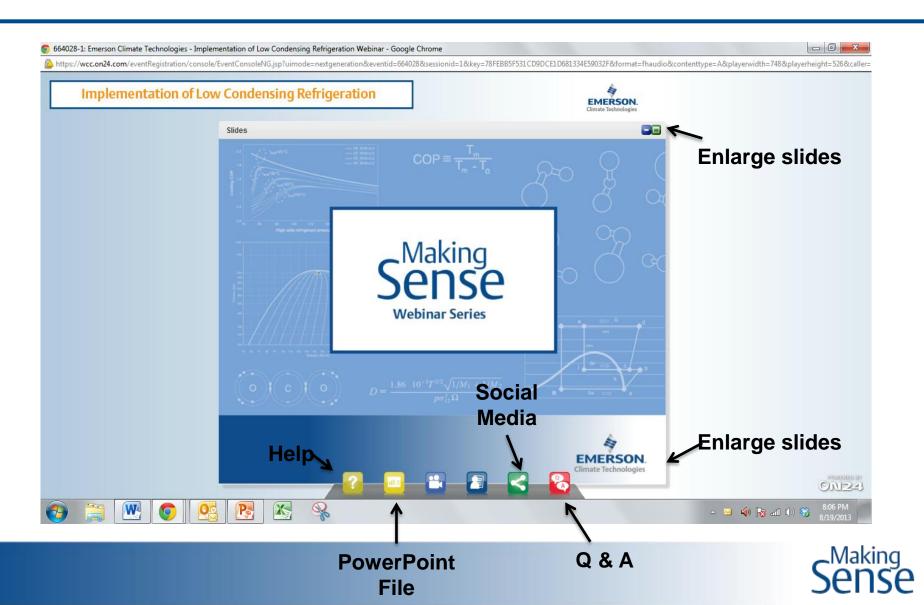


30 149 150 160 170 180 190 200 210 Enthelpy [Bits Ib]

0

Sense

Webinar Series


1.86 $10^{-3}T^{3/2}\sqrt{1/M_1 + 1/M_2}$

 $p\sigma_{12}^2 \Omega$

Making Sense Webinars

Making Sense Webinars

Emerson and Our Partners Giving Insight on the Three Most Important Issues in Refrigeration

Sense of the promising role of **new refrigerants**. Webinar Series

A Conversation on Refrigerants

January 21, 2014

Presented By:

Rajan Rajendran

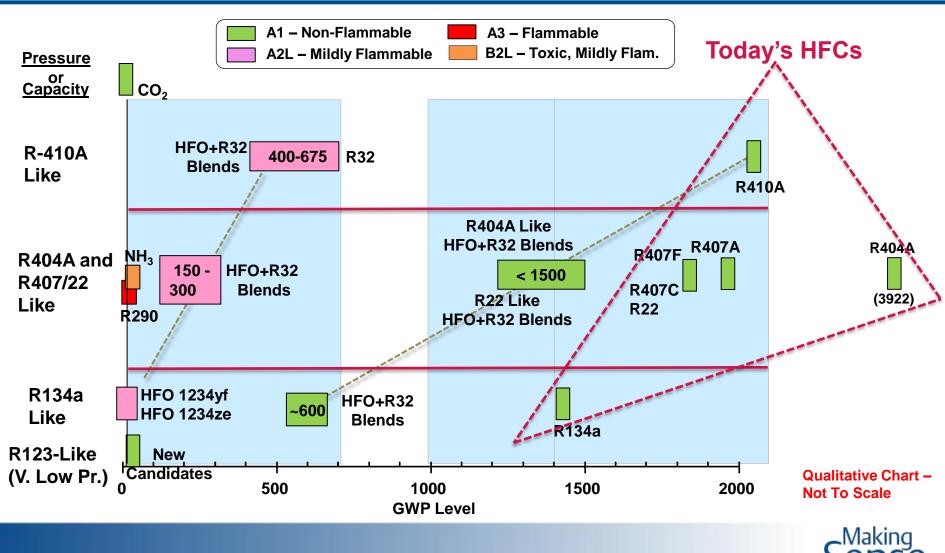
Vice President of Engineering Services and Sustainability Emerson Climate Technologies Guest Panelists:

Barbara Minor Senior Technical Fellow DuPont Fluoroproducts Mark W. Spatz Global Refrigerant Technology Leader Honeywell's Fluorine Products Brett Van Horn, PhD Global Project Leader, R&D Arkema Inc.

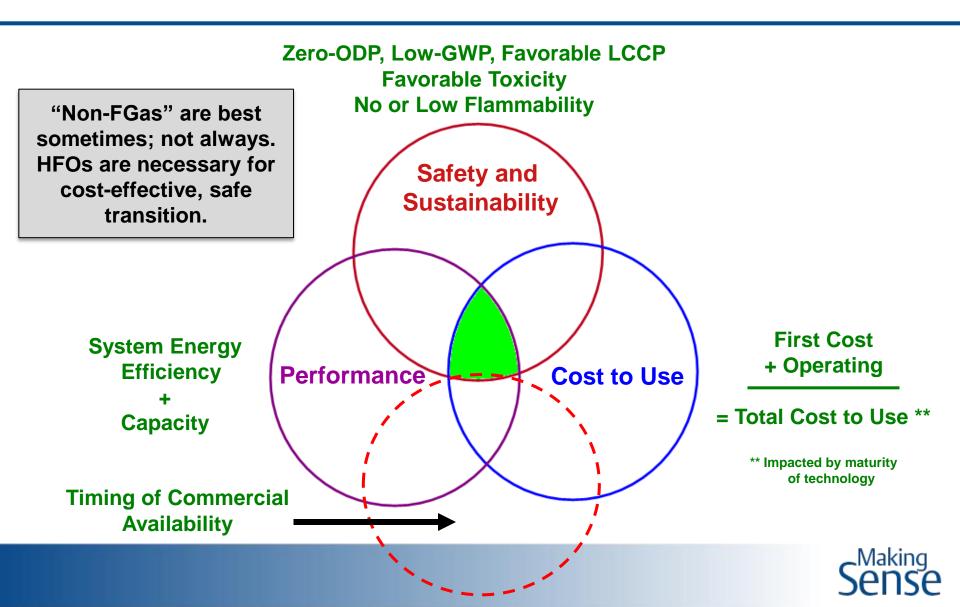
Why Talk About HFCs? Sample Regulatory and Voluntary HFC Actions

- Montreal Protocol and HCFC phase-out in developing countries
 China, India, Brazil, etc.
- Montreal Protocol and move to amend and include an HFC phase-down (North American Proposal)

F-Gas revision developments in Europe

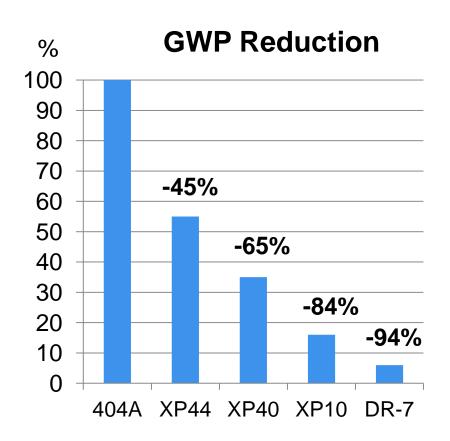

- HFC phase-down and application-specific bans
- HFC Taxes
 - Denmark, Spain, Australia, etc.

U.S. Environmental Protection Agency's SNAP


- President's Climate Action Plan from 2013
- Recent stakeholder meetings on listing lower GWP candidates and delisting high GWP HFCs
- Climate and Clean Air Coalition (CCAC)
- Voluntary actions by groups like Consumer Goods Forum (CGF)

Refrigerant Options for New and Existing Equipment

Refrigerant Selection Best Balance of Properties for Each Application


DuPont™ Opteon® Refrigerants

Optimal Balance of Properties; Many Promising Candidates

		Leading Lower GWP Candidates — HFO Based			
		Non-flammable		Mildly Fla	ammable
<u>Current</u>	<u>GWP</u>	<u>Name</u>	<u>GWP</u>	<u>Name</u>	<u>GWP</u>
HFC-134a	1430	XP10	630	YF	4
		DR-14	389		
HFC-404A	3902	XP40	1397	DR-7	246
		XP44	2140		
HFC-410A	2088			DR-5A	460
HCFC-22	1810	DR-91	988		
HCFC-123	77	DR-2	9		

Notes: GWP values AR4, "DR" designates under development

Opteon[®] Low GWP Replacements for R-404A Leading Candidates

XP44

- □ Close performance match to R-404A
- □ Formulated for lowest discharge temperature; ideal for transport refrigeration
- □ Non-flammable; for retrofit and new systems
- XP40
 - □ Close performance match to R-404A
 - Non-flammable; for retrofit and new systems

XP10

- Close performance match to R-134a; for retrofit and new systems
- Non-flammable; preferred for hybrid CO₂ cascade systems

• DR-7

- □ Close performance match to R-404A
- □ Mildly flammable (ASHRAE Class 2L expected)
- □ For smaller charge size equipment (condensing units, self-contained)

Honeywell's Solstice™ Low GWP Refrigerants

Solstice[™] HFO's for Low and Medium Pressure Applications

Solstice™ HFO's				
Current Product	Non- Flammable	Mildly Flammable (ASHRAE A2L)	Examples of Possible Applications	
HFC-134a GWP = 1300		Solstice yf GWP = 0	Auto A/C, Vending, Refrigerators	
		Solstice ze GWP = 1	Chillers, CO₂ Cascades, Refrigerators	
R-123 GWP = 79	Solstice zd GWP = 1		Centrifugal Chillers	

Note: All GWP values use the latest assessment from the ICCP, "AR5"

Honeywell's Solstice[™] Low GWP Refrigerant Blends

Solstice[™] HFO Blends for Medium & High-Pressure Applications

Solstice™ HFO Blends				
Current ProductSolstice™ N Series Reduced GWP Option Non-Flammable (ASHRAE A1)		Solstice [™] L Series Lowest GWP Option Mildly Flammable (ASHRAE A2L)	Examples of Possible Applications	
HFC-134a GWP = 1300	<mark>N-13 —</mark> GWP = 547		Chillers, Medtemp Refrigeration	
HCFC-22 GWP = 1760	N-20 — GWP = 891	L-20 — GWP = 295	Stationary A/C, CO ₂ Cascades, Refrigeration	
R-404A GWP = 3943	<mark>N-40 —</mark> GWP = 1273	L-40 — GWP = 285	Low-Temp Refrigeration	
R-410A GWP = 1924		L-41 — GWP = 461 GWP = 572	Stationary A/C Applications	

1.7				100
1000	1000			<i>p</i>
-				
Vitte	_	1000	_	

Note: All GWP values use the latest assessment from the ICCP, "AR5"

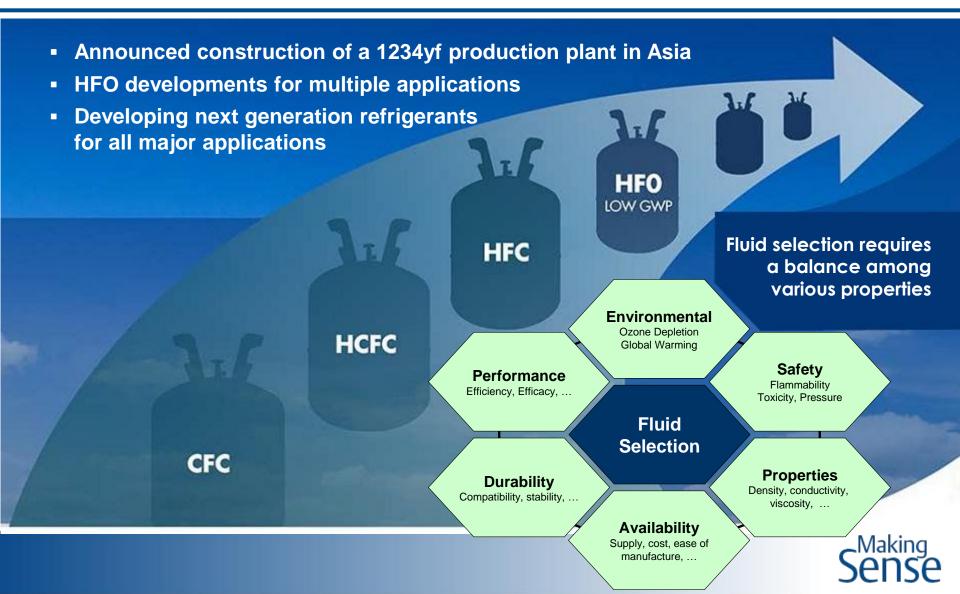
Current Refrigerant Options to Replace R-22

R-407F

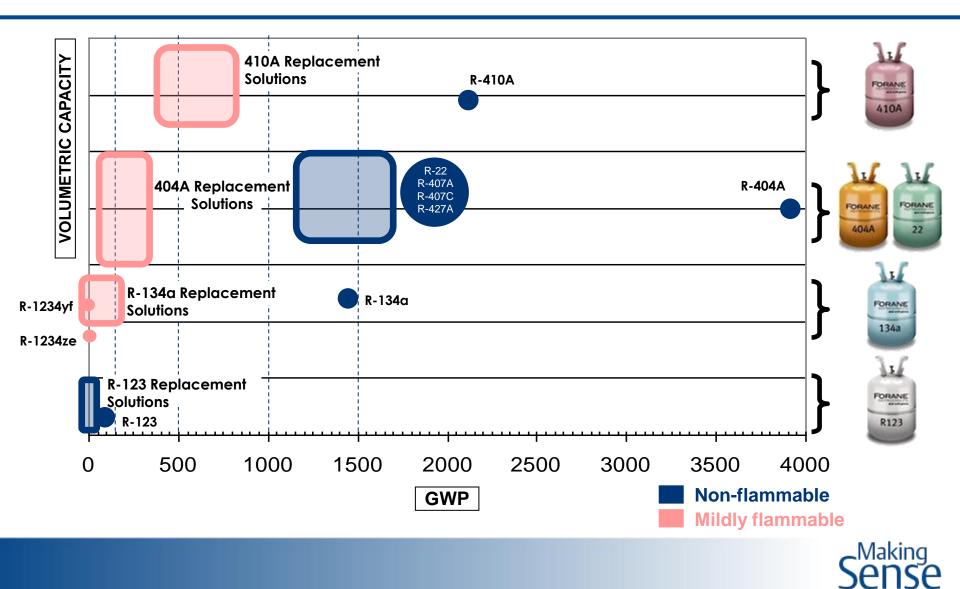
R-422D

For Refrigeration Applications:

- R-407F offers the best capacity match to R-22 in medium and low-temperature applications
- An efficient R-22 retrofit option
- Lowest GWP (1674) among R-22 replacements for commercial refrigeration
- Requires POE
- No TXV change or adjustments


For Unitary Air Conditioning Applications:

- No oil change* or TXV change in most installations
- Satisfies customers looking for a "drop-in" option


* System designs vary, and the addition of POE may be required to assure proper oil return

Arkema Moving Toward Sustainable Refrigeration Technology

Arkema's Next Generation Refrigerants For Low, Medium and High-Pressure Applications

Arkema's Next Generation Refrigerants For Low, Medium and High-Pressure Applications

Current Refrigerant	FORANE R123 R-123 GWP = 77	R-134a GWP = 1430	R-410A GWP = 2100	FORANE 404A R-404A GWP = 3900	R-22 GWP = 1810
Non- Flammable	ARC-1 (GWP < 15)			ARM-35 (GWP ~ 2150) ARM-32b (GWP ~ 1400)	ARM-32c (GWP < 1400)
Mildly Flammable		R-1234yf (GWP = 4) ARM-42 (GWP < 150)	ARM-71a (GWP < 500)	ARM-20a (GWP < 150) ARM-20b (GWP ~ 250)	
Flammable				ARM-25 (GWP < 150)	

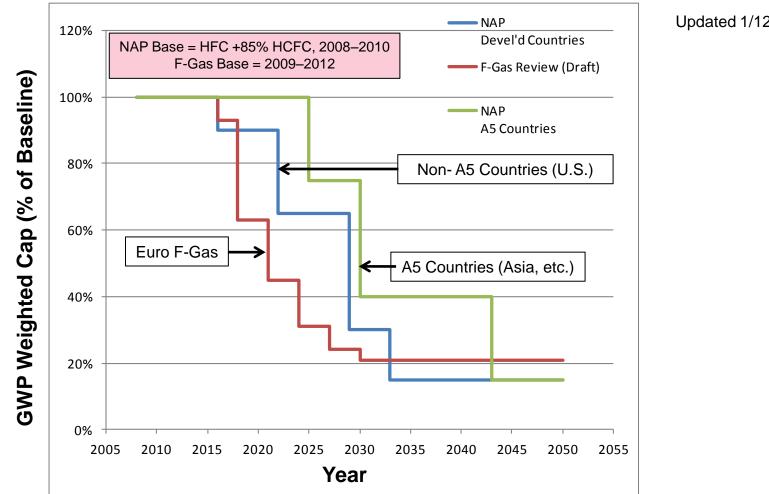
Thank You!

Questions and Answers

DISCLAIMER

Although all statements and information contained herein are believed to be accurate and reliable, they are presented without guarantee or warranty of any kind, expressed or implied. Information provided herein does not relieve the user from the responsibility of carrying out its own tests and experiments, and the user assumes all risks and liability for use of the information and results obtained. Statements or suggestions concerning the use of materials and processes are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe on any patents. The user should not assume that all toxicity data and safety measures are indicated herein or that other measures may not be required.

What Is a Refrigerant User Faced With?


- Regulatory climate is uncertain/forming to nonexistent. How does one plan in this environment?
- Confusing choices:
 - Short term vs. long term
 - Energy efficiency or global warming potential?
 - Synthetic or natural?
 - Flammable or non-flammable?
- What do UL standards and building codes allow?
- Large base of R22 systems what alternatives are acceptable with all the new criteria of lower GWP, etc.?
- There will be a large base of HFC systems for this next change. Should we be concerned about converting out of these in the future?
- How to account for long cycles for: refrigerant development and commercialization; safety standards; building code changes; component and equipment design; and release for production?

Refrigerant Options: Further Questions

- Will development of lower GWP refrigerants vary for: Europe? U.S.? Asia? Latin America?
- Your thoughts on recent developments in Europe on the F-Gas regulation?
- Your thoughts on the recent EPA stakeholder meetings for SNAP?
- What is the viability of R404A as a refrigerant for the long term?
- Why is R410A a good refrigerant in AC for the long term? Or is it?
- How can we be confident that the lower GWP candidates are not "interims" given the HFC phase-down discussions? What is the minimum GWP needed to meet long-term, phase-down goals?
- What is the user's responsibility maintain a right-charged, leak-free system?
- What is the service technician's responsibility recover and recycle/reclaim? Be aware of changes and train for new?

HFC Phase-Down Proposals

Updated 1/12/14

Makino