

CONTENTS

p	efrigerant 717 (Ammonia)	Pag
n	Tutuadistion	. 3
	Sample Problem	. 5
	Continue Line Connection For Intermediate Or Low Stage Duty.	
	Suction Line Capacities For Single Or High Stage Applications	. 7
	Discharge And Liquid Line Capacities	. 8
	K-Factors (Velocity Heads) For Valves And Fittings	. 9
	Equivalent Lengths Of Valves And Fittings	10
	Schematic Piping Layout For Sample Problem	. 11
	Flow Rate Per Ton Of Refrigeration	12
	Pressure Drop In Steel Piping	. 13
	TO A CALL TO CALL TO THE PARTY OF THE PARTY	. 14
	Velocity And Pressure Drop In Steel Piping	. 15
	Relation Of Pressure-Change To Elevation Difference	16
	The state of the s	. 1/
	Temperature Penalty Due To Pressure Drop	. 18
	Thermodynamic Properties	19
	Flow Rate	. 22
	Flow Rate	
D	efrigerant 12	
	T. A. G. Alian	23
	Comple Ducklam	20
	Gustian Line Conggities For Intermediate Or Low Stage Duty	20
	Constign Vine Conscition For Single Or High Stage Applications	. Z1
	Dial and And I jouid I in Canacities	. 40
	W. Footone (Volcoity Hoads) For Valves And Fittings	. 29
	Thereis along Longths Of Valves And Fittings	JU
	Schematic Pining Layout For Sample Problem	91
	Plan Data Por Ton Of Refrigeration	. JZ
	The The Chool Dining	. 33
	Walanity In Steel Pining	. 04
	Tr. L And Droggue Dwon In Steel Pining	. 30
	Therewas Dean In Conner Tuhing	. อง
	Walanity In Conner Tuhing	. 01
	Walnuth and Droggue Drop In Copper Tubing	. 00
	Polation Of Pressure Change To Elevation Difference	เอฮ
	There Deep In Valves And Fittings	40
	To Pressure Property Due To Pressure Prop	. 41
	They made manie Properties	42
	Flow Rate	44
	· · · · · · · · · · · · · · · · · · ·	

(continued)

CONTENTS

Refrigerant 22	Pa
Introduction	45
Sample Problem	47
Suction Line Capacities For Intermediate Or Low Stage Duty.	48
Suction Line Capacities For Single Or High Stage Applications	49
Discharge And Liquid Line Capacities.	50
K-Factors (Velocity Heads) For Valves And Fittings	51
Equivalent Lengths Of Valves And Fittings	. 52
Schematic Piping Layout For Sample Problem	. 53
Flow Rate Per Ton Of Refrigeration.	. 54
Pressure Drop In Steel Piping	. 55
Velocity In Steel Piping	. 56
Velocity And Pressure Drop In Steel Piping	. 57
Pressure Drop In Copper Tubing	. 58
Velocity In Copper Tubing	. 59
Velocity And Pressure Drop In Copper Tubing.	. 60
Relation Of Pressure Change To Elevation Difference	. 61
Pressure Drop In Valves And Fittings.	. 62
Temperature Penalty Due To Pressure Drop.	. 63
Thermodynamic Properties.	. 64
Flow Rate	. 66
Refrigerant 502	
Introduction	07
Refrigerant Line Capacities For Single Or High Stage Applications	07
Flow Rate Per Ton Of Refrigeration	00
Pressure Drop In Copper Tubing	69
Velocity In Copper Tubing	70
Velocity And Duggerry Duan In Compan Taking	71
Velocity And Pressure Drop In Copper Tubing.	72
Relation Of Pressure-Change To Elevation Difference	73
Thermodynamic Properties	74
Appendix	
General Statement Of Limitations And Assumptions.	76
Nomenclature	76
General Equation For Pressure Drop In Pipe	76
The Moody Chart	77
Losses In Valves And Fittings	77
Bibliography.	78
Table A-1 — Minimum Tonnage For Oil Entrainment Up Suction Risers	79
Double Suction Risers	80
Table A-2 — Minimum Tonnage For Oil Entrainment Up Hot Gas Risers.	81
Liquid Recirculation Systems — Line Sizing	82
Table A-4 — Steel And Wrought Iron Pipe — Dimensions And Physical Data	03 03
Table A-5 — Copper, Brass or Seamless-Steel Tubing — Dimensions And Physical Data	00 QA
Table A-6 — Receiver To Condenser Equalizing Line Sizes	94 84
Table A-7 — Low Stage Refrigerant Line Capacity Multipliers	85
Table A-8 — Practical Gas Line Velocities for Various Refrigerants	85
Table A-9 — Conversion Table For Fahrenheit And Centigrade	85
Table A-10 — Flow Of Water Through Schedule 40 Steel Pipe	86
	87

REFRIGERANT 717 (AMMONIA) PIPING DATA

This section presents useful data for the proper sizing of Refrigerant 717 (Ammonia) piping. Its purpose is not to set design standards, but to provide the latest pipe-sizing information available. It also discusses various factors which determine the allowable pressure drops in different portions of a refrigerant piping system.

Basis of Charts and Tables

The pressure-drop charts given herein for single or high stage applications are based on calculations using the commonly accepted Darcy-Weisbach pressure-drop formula and Darcy friction factors from the Moody Chart (see appendix, Sections A-III and A-IV). Capacity tables for intermediate or low stage applications are based on calculations using Fanning's equation for friction loss.

Pipe Lines. Suction line velocity and pressure drop values are for saturated vapor temperature conditions, and the discharge line values are at pressures corresponding to the condensing temperatures indicated, and superheated to 250 F.

Liquid line velocities and pressure drops are for saturated ammonia liquid at 90 F and can be used with reasonable accuracy for temperatures between 70 F and 110 F.

Valves and Fittings. Pressure losses through refrigerant valves and fittings are given in a table, in the form of "K" factors (velocity heads). These "K" factors are representative, using average values obtained from various tests and manufacturers' ratings. "K" factors vary widely for a given type and size of valve or fitting, depending on the construction or internal design.

For a simplified determination of these pressure drops, "equivalent lengths" of valves and fittings are given in a table. These "equivalent lengths" have been derived, using the "K" factors in conjunction with friction factors taken from the Moody Chart at Reynolds Numbers in the range of normal usage, for both vapor and liquid lines.

"Equivalent lengths" result in a sacrifice of accuracy, depending on the temperature, state and velocity of the refrigerant. "K" factors give more reliable pressure drop data. For greater accuracy, particularly for valves, "K" factors should be obtained from the manufacturer.

Pressure-Drop Limitations (Pipe-Sizing Factors)

Vapor line pressure drops result in an increase in power input to the compressor and a decrease in refrigeration capacity. The most critical line with respect to this is the suction line, as losses in it have the greatest effect on the system. An economic study, involving power input, system capacity, size of system components—evaporator and condenser—and installation cost of pipe and

pipe insulation, can best determine the optimum pressure-drop allowance. Experience has shown that the allowable pressure drop for suction lines should decrease with suction temperature. Discharge lines may have a greater pressure-drop, for a specified temperature penalty, than suction lines.

Suction line pressure drop increases the volume of gas to be handled by the compressor, increases the ratio of discharge pressure to suction pressure, and reduces the volumetric efficiency of the compressor. This results in less capacity from a given compressor and more power per ton of refrigeration.

The effect of a particular amount of suction line pressure drop is greater as the suction pressure decreases. Fig. 8 indicates this in showing that a particular pressure drop results in a greater "temperature penalty" at a lower saturation temperature. The result of suction line pressure drop is that the compressor operates from a suction condition corresponding to the actual evaporator temperature minus the temperature penalty.

Larger suction line sizes reduce the pressure drop and, therefore, reduce the compressor capacity required and also the power per ton. However, the larger pipe size increases its cost and also its installation and insulation cost. The best size from an economic consideration can be determined by an economic study with the cost of the various factors available.

Discharge line pressure drop also increases the ratio of discharge pressure to suction pressure and reduces the volumetric efficiency of the compressor. This results in less capacity from a given compressor and more power per ton of refrigeration.

The effect of a particular amount of discharge line pressure drop is less as the discharge saturation temperature increases, but the difference is not very great in the range of saturation temperatures corresponding to usual discharge pressures. Fig. 8 indicates this by showing the relatively small change in "temperature penalty" for a particular pressure drop at the temperatures corresponding to saturation at normal discharge pressures. Fig. 8 also indicates the smaller "temperature penalty" for a given pressure drop in the saturation temperature range corresponding to usual discharge conditions as compared to the range corresponding to usual suction conditions. Because of this, economic considerations usually result in the use of a larger pressure drop as the basis of design for a discharge line than that which would be used for a suction line.

Pressure-drop in the *liquid line* does not affect the system capacity or power input, but flash gas, caused by pressure-drop or liquid-lift, increases the required capacity of the expansion device.

Higher liquid line velocities should be used with caution because of possible stresses due to rapid closing of any liquid valve. Solenoid valves, or solenoid pilot-controlled valves, almost always are rapid-closing.

Basis of Design

Suction lines should generally be selected for a pressure drop of 1 to 3 psi per 100 feet of pipe for temperatures above 20 F. On the other hand, pressure drop should range from 1 to 0.2 psi per 100 feet of pipe at temperatures between + 20 F and — 60 F. In other words pressure-drop allowance should decrease with decreasing suction temperatures.

Discharge lines should generally be selected for a nominal pressure drop between 2 and 5 psi per 100 feet of pipe at any normal condensing temperature.

Liquid lines are sized for low pressure drop to avoid or minimize flash gas.

For sizing of liquid lines from the condenser to the receiver, the criterion used is a liquid velocity of 100 ft per minute to simulate sewer-type drainage. Velocities ranging from 75 to 150 ft per minute are commonly used. Factors influencing this line-size selection are elevation difference between the condenser and receiver, the number of restrictions in this line, the diameter of the pipe, whether or not an external gas equalizer will be provided, relationship of condensing temperature to ambient temperature, etc. Where other velocity criteria are used, the line size can readily be selected by the ratio of the velocity used to 100 ft per minute.

For liquid lines from receiver to system, the velocity range used is from 100 to 300 fpm, with pressure drop of 2 psi per 100 ft or greater.

The curve showing the relation of change in elevation to the pressure change is based on a constant liquid temperature of 90 F. Where saturated liquid must rise from the receiver to the evaporator, the loss in static head would create flash gas which would further change the characteristics of the temperature-penalty curve. Consequently, for the accurate use of this curve, liquid subcooling should be provided to the extent of the elevation-difference penalty when the liquid column rises upward. Where the receiver is above the evaporator, no subcooling is necessary and credit for the increased pressure may be taken in the selection of the expansion device. (See Figure 6)

Downstream of the expansion device there is a mixture of liquid and flash gas, which involves two-phase flow requiring rather complicated calculations. It has been found from experience that to select a pipe one size larger than that upstream of the expansion device is generally satisfactory.

How to Use Charts

 Tables 1-A and 1-B permit quick selection of suction lines applicable to the conditions listed.

↑ VILTE

Tables 1-A gives suction line capacities (tons) for intermediate or low stage applications. The values in this table are based on 0°F. saturated discharge temperature. For intermediate or low stage suction line capacities at other saturated discharge temperatures, multiply table value by proper line capacity multiplier given in Table A-7 in appendix.

Table 1-B gives suction line capacities (tons) for single or high stage applications at various saturated temperatures and pressure drops, and at 90°F. condensing temperature. For other condensing (or liquid) temperatures and other pressure-drop limitations, follow steps 3 and 4 below.

2. Table 2 shows discharge line capacities in tons of refrigeration for various pressure drops per 100 ft, and is based on 90 F condensing temperature and + 20 F evaporator temperature. For other condensing (or liquid) temperatures, these capacities are not valid; use the detailed steps outlined below.

Also shown are liquid-line sizes (1) from the condenser to the receiver, based on 100 ft per min liquid velocity, and (2) receiver to system expansion device, based on a pressure drop of 2.0 psi per 100 ft.

The following steps are used for detailed sizing of ammonia piping:

- 3. Fig. 2 permits a quick determination of refrigerant-flow rates in lb/(min) (ton) at various evaporating and high pressure liquid temperatures. The total refrigerant-flow rate is determined by multiplying the lb/(min) (ton) from these curves by the system or applicable tonnage.
- 4. Fig. 3 provides suction and discharge-gas line pressure drops for 100 ft equivalent length of pipe. After finding the total refrigerant-flow rate in lb per min, the pressure drop through any gas line is found by projecting vertically, from the flow rate on the lower scale, to the intersection with the line size to be used. At this intersection, follow the horizontal line to the right and intersect with the vapor temperature line, and then project vertically to the top scale to read the pressure drop.
- 5. Fig. 4 shows suction and discharge-gas line velocities at various flow rates for different size refrigerant lines. It is read in the same manner as Fig. 3, with the resultant answer in ft per sec velocity.
- 6. Fig. 5 is used to determine liquid-line velocity and pressure drop. The liquid-flow rate in lb per min, as read on the lower scale, is projected upward to the intersection of a

given pipe size. The velocity in ft per sec can be read at this point and a pressure drop in psi per 100 ft equivalent length can be read on the ordinate scale.

- 7. Fig. 6 indicates the change in static pressure for a liquid temperature of 90 F at elevations from 0 ft to 50 ft. The elevation difference, read on the lower scale and projected upward to the curve and thence horizontally to the left, will give the change in pressure resulting from elevation difference.
- 8. Table 3 lists "K" factors (resistance in velocity heads) for commonly-used refrigerant valves and fittings. To determine the actual pressure drop at any given condition of flow, the "K" factor is applied to the nomograph in Fig. 7.
- 9. Fig. 7 is a nomograph presented for the determination of pressure loss through valves and fittings when the "K" factor and operating conditions are known. A straight line, extending through known values on the "K" factor and velocity scales, gives an intersection with the turning line. A straight line from this intersection is then projected through the desired temperature until it intersects with the scale on the extreme right, giving pressure drop in psi through the valve or fitting.
- of commonly-used refrigerant valves and fittings. These values may be used in lieu of the "K" factors, for convenience, where less accuracy is required. The equivalent length of all fittings in a line are added to the linear feet of straight run to arrive at a total equivalent length. This length, divided by 100 and multiplied by the pressure drop per 100 feet, will provide the pressure loss throughout the line.

11. Fig. 8 shows the temperature penalty due to pressure drop. The pressure drop read on the left scale, projected to the intersection with the temperature curve will give the temperature penalty due to the pressure drop for saturated liquid or gas as read from the lower scale.

Pulsating Flow

The data provided in the figures and tables above are based on steady-flow conditions. Irregular flow, such as pulsating flow and two-phase flow, which are met in practice, causes an increase in pressure loss beyond that indicated in the given data.

Reciprocating compressors create pulsating flow in both discharge and suction lines. However, because gas density and the pressure-pulsation amplitude are both greater in the discharge line, the added frictional loss due to pulsation is also greater in the discharge line. For the same reasons, the additional pressure loss due to pulsating flow is greater for a single-cylinder compressor than for a multi-cylinder compressor. Pulsation is greater as the compression ratio increases.

The refrigerant piping and other components in the system, such as valves, fittings, condenser, evaporator, etc., attenuate the pulsation, resulting in an energy loss that is only slightly above the frictional loss that occurs when the flow is steady. Use of a muffler in the discharge line, close to the compressor, reduces the friction loss in the line downstream from the muffler. Of course, the frictional loss of the muffler itself must be considered in the system design.

The calculations for these types of flow are complicated, but it has been found that the effects of pulsating flow, where they constitute a problem, can be minimized by selecting the next larger pipe size.

SAMPLE PROBLEM

GIVEN

100 tons refrigeration 10 F evaporator temperature 100 F condensing (liquid) temperature

Piping layout as shown in Fig. 1 Select discharge, liquid and suction lines

Determine compressor operating conditions

SOLUTION

From Fig. 2, the refrigerant flow per ton at 10 F evaporator temperature and 100 F condensing temperature = 0.435 lb/(min) (ton). Refrigerant circulation = 100 tons $\times 0.435$ lb/(min) (ton) = 43.5 lb/min.

DISCHARGE LINE

From Table 2, at 20 F saturated evaporator temperature, 90 F sat-

urated condensing temperature and 2 psi/100 ft pressure drop, a 21/4" pipe has a capacity of 140 tons. A 2" size will be tried, although, at the conditions of this problem, it may develop that its pressure drop will appreciably exceed 2 psi/100 ft.

Pressure Drop in Pipe:

From Fig. 3, pressure drop/100 ft. at 43.5 lb/min and 100 F condensing temperature through 2"

pipe = 2.3 psi/100 ft.

Pressure drop for 45 ft of pipe $=45/100 \times 2.3$ From Fig. 4, velocity at 43.5 lb/min

and 100 F condensing temperature through 2" pipe = 61 fps

Pressure Drop in Fittings:

Pressure drop for three 2" longradius welded ells:

From Table 3, K = 0.25

From Fig. 7, Pressure drop == 0.05 psi

 $3 ext{ ells} imes 0.05 ext{ psi}$

🚃 0.15 psi = 1.19 psi

= 0.35 F

== 1.04 psi

Total pressure drop Temperature Penalty:

From Fig. 8, 1.19 psi, 100 F saturation temperature, temperature penalty

Since this temperature penalty is small, the 2" pipe selection will be

used.

LIQUID LINES

Condenser to receiver:

Base selection on velocity in liquid line of 100 fpm.

From Table 2, select 11/2" ips. From Fig. 5, velocity is 1.6 fps == 96 fpm.

Because of gravity flow, no pressure drop need be calculated.

Receiver to expansion valve:

From Fig. 5 for 43 lb/min liquid, select 1" pipe size resulting in 2.0 psi/100 ft pressure drop.

Pressure Drop in Pipe:

Velocity, from Figure 5 = 4 fps = 240 fpm.

Pressuré drop for 28 ft of pipe =

 $28/100 \times 2.0$ == 0.56 psi Pressure Drop in Valves and Fittings:

From Table 3, for three standard 1" screwed elbows, K = 1.4; from

Fig. 7, pressure drop per ell = 0.10

psi; 8 ells \times 0.1 psi

From Table 3, for one 1" screwed

angle valve, K == 4.3

From Fig. 7, pressure drop for

1" valve at 4 fps

Total pressure drop

= 0.28 psi = 1.14 psi

= 0.80 psi

Expansion valve to evaporator:

Size line one size larger than upstream of valve to allow for flash gas, or 11/4".

SUCTION LINE

From Table 1-B, select 3" pipe, which is adequate for 95.3 tons of refrigeration at 1 psi/100 ft pressure drop, 10 F saturated suction temperature and 90 F saturated condensing temperature (interpolated).

Pressure Drop in Pipe:

From Fig. 3, 43.5 lb/min, 3" pipe, at 10 F suction temperature, pressure drop = 1.1 psi/100 ft.

Pressure drop for 27 ft of pipe

 $=27/100 \times 1.1$

== 0.30 psi

Pressure Drop in Fittings:

From Fig. 4, velocity at +10 F suction temperature and 43.5 lb/min for 3'' pipe = 105 fps.

For two 3" long-radius welded ells,

Table 3, K = 0.23From Fig. 7, pressure drop for 1

ell = 0.033 psi

For two ells, pressure drop

== 0.07 psi

Total pressure drop

=0.37 psi

Temperature penalty:

From Fig. 8, 0.37 psi at 10 F saturation temperature, temperature penalty

= 0.40 F

COMPRESSOR SELECTION

Therefore, a compressor must be selected for 100 tons capacity at 10-0.40-9.6 F suction temperature and 100+0.35=100.4 F condensing temperature.

(For Intermediate or Low Stage Applications)

SUCTION

			· ·	Suction	Lines				PING
Refrigerant and AT Equivalent of	Sta	eel	ļ		Tomp F		Second Stage Discharge and Liquid Lines	***************************************	
Friction Drop	IPS	всн	-60	-50	-40	-30			•
Refrigerant 717 (Ammonia) 1 F \(\Delta T \) Per 100 ft Equiv. Length	1/2 3/4 1 11/4 11/2 2 21/2 3 31/2 4 5	40 40 40 40 40 40 40 40 40 40 40		0.76 1.53 3.15 5.0 9.2 15.0 26.8 39.8 55.2 100.0	1.05 2.00 4.10 6.5 12.0 19.5 35.0 52.0 72.0 130.0	1.30 2.50			
	8	40				610.0	(9) D. the Terr and Equip	.l Itho	in a given nine

NOTES:

Values based on 0 F saturated discharge temp. For capacities at other saturated discharge temp, multiply table value by proper line capacity multiplier (See appendix, Table A-7).
 For other ΔT's and Equivalent Lengths, L.
 Line Capacity (Tons)

= Table Tons $\times \left(\frac{100}{L_{\bullet}} \times \frac{\text{Actual } \Delta T \text{ Loss Desired}}{\text{Table } \Delta T \text{ Loss}}\right)^{0.55}$

(3) For other Tons and Equivalent Lengths in a given pipe size,

$$\Delta T = \text{Table } \Delta T \times \frac{L_{\bullet}}{100} \times \left(\frac{\text{Actual Tons}}{\text{Table Tons}}\right)^{1.5}$$

(4) For pressure drop (psi) corresponding to Δ T, refer to Refrigerant properties, <u>Table</u> 5.

(5) Size low stage (Booster) discharge lines same as equivalent single stage suction lines (see Table 1-B).

TABLE 1-B. SUCTION LINE CAPACITIES—TONS1

(For Single or High Stage Applications)

						Satura	ited Si	ıction	Tempe	erature	_ F						
LINE SIZE ² (Inches)		30			20			0			2	0			4	0	. المنافع المن
(Pr	essure	Drop	, Psi/1	00 ft				····			
IPS	1/2	1	2	1/2	,1	2	1/2	1	2	1/2	1	2	3	1/2	1	2	3
½ ¾ 1	0.44 0.96 1.92	1.37	1.96	1.11	1.58	2.24	1.45		2.93	1.81	2.60		5.23	2.25	3.22	4.61	
1¼ 1½ 2 2½	4.8 7.3 14.1 22.8	6.95 10.5 20.5 32.6	9.85 14.9 29.0 46.1	5.43 8.25 15.9 25.3		16.8 32.5	10.7	15.5 29.6		14.6 26.4	12.95 19.7 38.0 60.2	27.8 53.7	34.2 67.1	17.1	46.8	34.5 66.7	42.6
3 4 5 6	40.1 83.5 150 244	57.5 119 214 344	81.4 169 303 487	45.1 93.0 168 274	64.6 132 238 388	91.5 186 341 550	59.1 121 218 354	84.2 172 312 505	121 244 443 715	74.5 153 276 447	106.5 218 394 637	305 555	187.5 378 683 1110	92.5 190 342 558	132 269 485 789	190 382 690 1125	233 469 849 1380
8 10 12	500 900 1450	710 1280 2050	1000 1810 2900		1435		1305	1860	1468 2645 4280	1645	1308 2350 3820	3310	4100	2040	1615 2900 4685	2295 4140 6670	2810 5035 8200

NOTES: 1 Based on fluid flow at 90 F saturated condensing temperature

* Data based on Schedule 40 steel pipe, except that 1" and smaller are based on Schedule 80

DISCHARGE AND LIQUID PIPING

TABLE 2. DISCHARGE AND LIQUID LINE CAPACITIES-TONS '

		DISCHA	ARGE LINES		L	IQUID LINES
LINE SIZE 2 2 4 (Inches)		Tempe	rature 250 F		To Receiver	To System
(menes)		Pres: Ps	sure Drop i/100 ft		Velocity fpm	Pressure Drop Psi/100 ft
IPS	1/2	1	2	3	100	2
. %	465-94				8.5	11.6
1/2	1.28	1.85	2.65	3.25	13.6	23.5
*	2.84	4.03	5.83	7.15	25.2	53.2
1	5.68	8.06	11.6	14.2	42.1	105
1¼	14.7	21.1	30.4	37.2	75.3	225
11/2	22.2			55.0	103	351
2	43.0	61.4	87.6	107	197	805
2½	68.6	98.5	140	171	280	1280
3	122	174	246	300	432	2270
4	244	351	497	608	745	4630
5	450	638	900	1100		
6	734	1030	1470	1800	-	_
8	1480	2110	3010	3650		

NOTES: 1 Based on fluid flow at 90 F saturated condensing temperature and 20 F saturated evaporating temperature

^{*} Data on sizes 2" and over based on Schedule 40 steel pipe

^{*} Data on sizes 1" and below based on Schedule 80 steel pipe

^{*} Data for discharge line sizes 1¼ " and 1½ " based on Schedule 40 steel pipe; for liquid line sizes 1¼ " and 1½ " based on Schedule 80 steel pipe

VALVES AND FITTINGS K-FACTORS

TABLE 3. "K-FACTORS" (VELOCITY HEADS) ' FOR VALVES AND FITTINGS

FERROUS VALVES AND FITTINGS ² LINE GLOBE VALVE ANGLE VALVE SHORT-RADIUS ELL LONG-RADIUS ELL TEE, LINE-FLOW TEE, BRANCH-FLOW																
LINE	GLOBE	VALVE	ANGLE	VALVE	SHOR	T-RADIUS	ELL	LON	G-RADIUS	ELL	TEE	, LINE-FL	o₩	TEE,	BRANCH-	FLOW
SIZE (inches) IPS	Screwed	Flanged	Screwed	Flanged	Screwed	Flanged	Welded	Screwed	Flanged	Welded	Screwed	Flanged	Welded	Screwed	Flanged	Welded
	21		11.0		2.5						0.9			2.7		<u></u>
<i>1</i> /2	15		8.4		2.1						0.9			2.4		,
34	11		5.7		1.7		_	0.9			0.9			2.0	-	_
1	9.3	15.5	4.3	5.0	1.4	0.43	0.46	0.73	0.40	0.32	0.9	0.26	0.43	1.8	1.0	1.37
11/4	8.4	12.8	3.5	4.0	1.3	0.40	0.42	0.60	0.37	0.29	0.9	0.24	0.36	1.7	0.90	1.31
11/2	7.8	11.5	2.9	3.4	1.2	0.39	0.40	0.52	0.34	0.27	0.9	0.22	0.31	1.5	0.88	1.27
2	7.0	9.9	2.2	2.8	1.0	0.36	0.38	0.40	0.30	0.25	0.9	0.19	0.28	1.4	0.80	1.17
21/2	-	9.0	_	2.5	_	0.34	0.37		0.27	0.24	_	0.17	0.26		0.75	1.13
3	_	8.3		2.4		0.33	0.36		0.25	0.23		0.16	0.24	-	0.72	1.10
4		7.5	_	2.3	_	0.31	0.35	_	0.22	0.22	_	0.14	0.22	-	0.68	1.05
5	_	7.0	_	2.3		0.30	0.34	_	0.20	0.21	_	0.13	0.19	-	0.64	1.01
6	_	6.7	-	2.3		0.28	0.32		0.18	0.20	-	0.12	0.18	-	0.60	0.98
8		6.2	_	2.3	_	0.27	0.31	_	0.15	0.19	_	0.10	0.15	_	0.57	0.93
10	_	6.0	_	2.3	_	0,25	0.30	_	0.14	0.18	-	0.09	0.14	_	0.52	0.90
12	-	-6.0	_	2.3	_	0.25	0.29	_	0.13	0.18		0.08	0.13	_	0.50	0.88

NOTES: 1 K=2gh/V²
2 Based on Schedule 40 pipe

VALVES AND FITTINGS **EQUIVALENT LENGTHS**

TABLE 4. EQUIVALENT LENGTHS OF VALVES AND FITTINGS

45-David-winds	Displantacy of the con-	TTTCINGUE (CARLOS)				FERRO	US VAL	VES A	ND FIT	TINGS 2.	3				4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	
LINE SIZE (Inches)	GLOBE	VALVE	ANGLE	VALVE	SHO	RT-RADIL	IS ELĻ	roi	NG-RADIU:	S ELL	TE	E, LINE-F	LOW	TEE,	BRANCH	-FLOW
IPS	Screwed	Flanged	Screwed	Flanged	Screwed	Flanged	Welded	Screwed	Flanged	Welded	Screwed	Flanged	Welded	Screwed	Flanged	Welded
¾	31		16		3.7						1.3			4.0		
1/2	29		16		4.1		_		_		1.8	_		4.7	_	_
*	31		16	_	4.7		_	2.5			2.5	_		5.6	_	
1	35	57	16	19	5.3	1.6	1.8	2.8	1.5	1.2	3.4	1.0	1.6	6.8	3.8	5.2
11/4	46	69	19	22	7.1	2.2	2.3	3.3	2.0	1.6	4.9	1.3	2.0	9.2	4.9	7.1
11/2	51	76	19	.22	7.9	2.6	2.6	3.4	2.2	1.8	5.9	1.4	2.0	9.9	5.8	8.4
2	63	89	20	25	9.0	3.2	3.4	3.6	2.7	2.3	8.1	1.7	2.5	12.6	7.2	10.5
21/2		101	-	28	-	3.8	4.2	_	3.0	2.7	-	1.9	2.9		8.4	13.0
3		123	_	36	-	4.9	5.3		3.7	3.4		2.4	3.6		11	16
4	-	155	-	48	-	6.2	7.2	-	4.5	4.5		2.9	4.5	_	14	22
5		190	-	63	-	8.1	9.2	-	5.4	5.7	_	3.5	5.1	-	17	27
6	-	227	-	78		9.5	11	-	6.1	6.8		4.1	6.1	-	20	33
8	-	295	-	110		13	15		7.1	9.0		4.7	7.1		27	44
0		370	-	142	-	16	18	_	8.7	11	_	5.6	8.7		1	56
2	-	465	-	173	-	19	22	-	10	14	_	6.2	10	İ	- [68

NOTES: ¹ L_o= K(D/f)

² Friction factors (f) determined at "practical" Reynolds Numbers based on 20 F suction lines having pressure-drop of 1.8 psi/100 ft

³ Based on Schedule 40 pipe

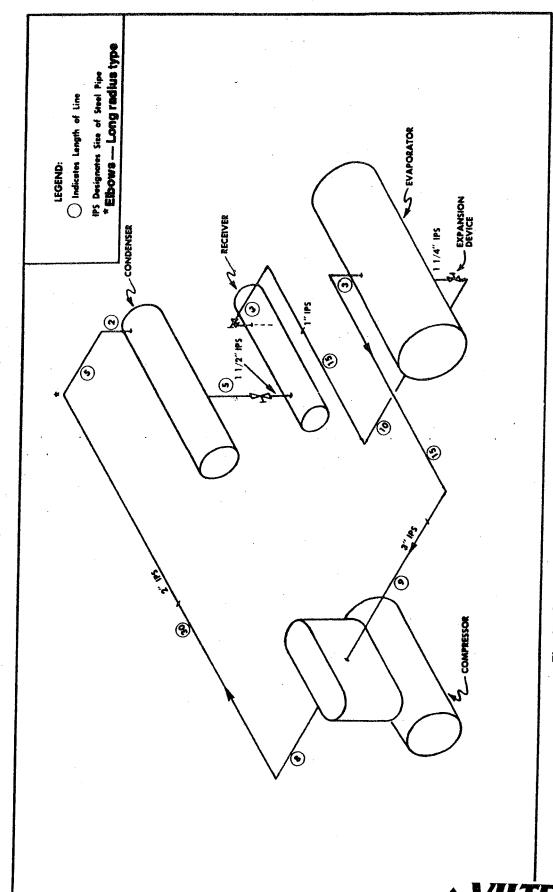
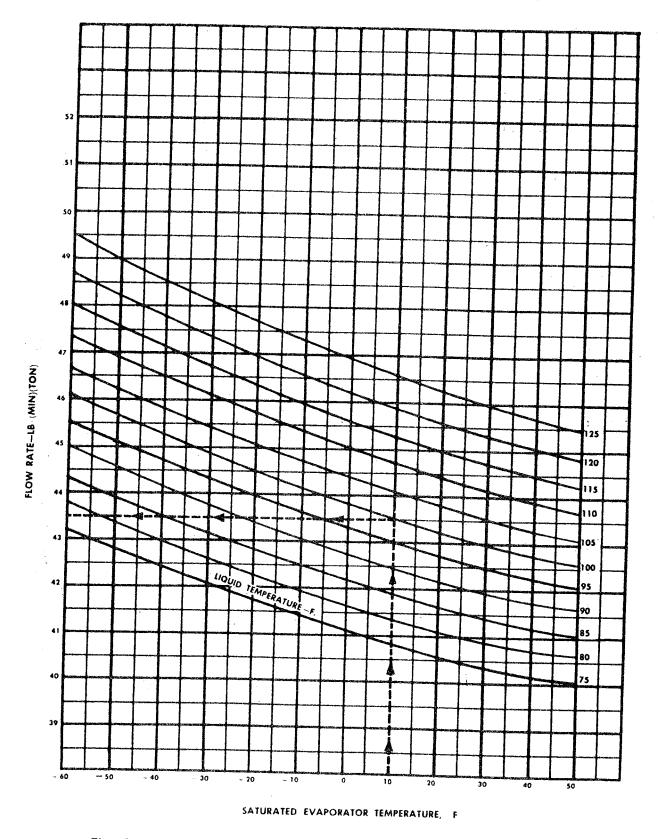
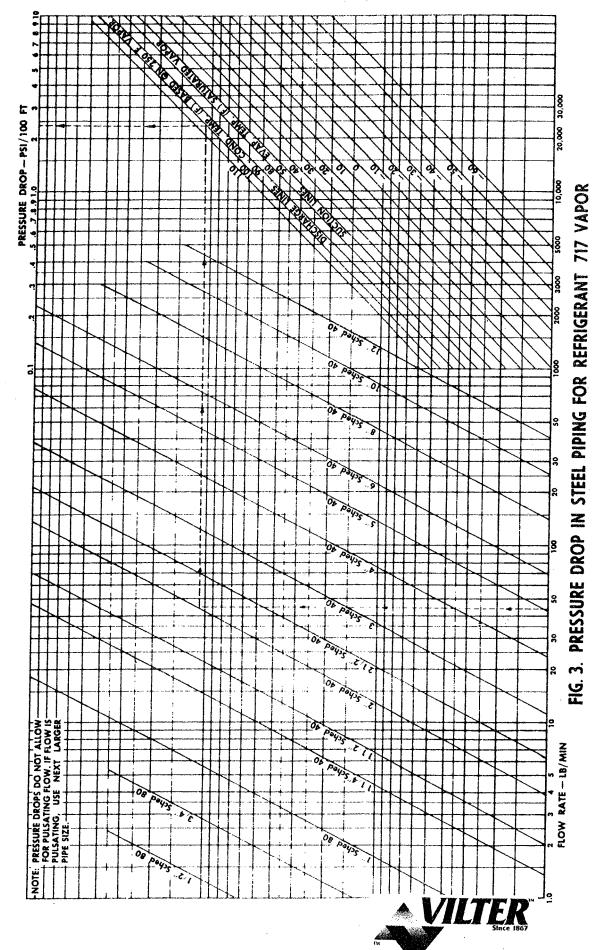
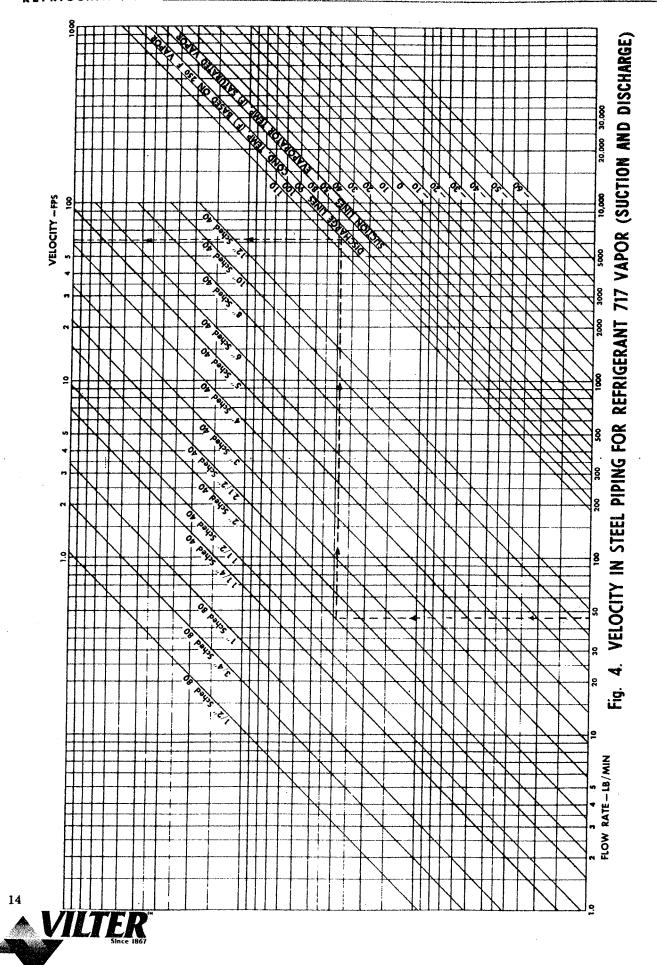
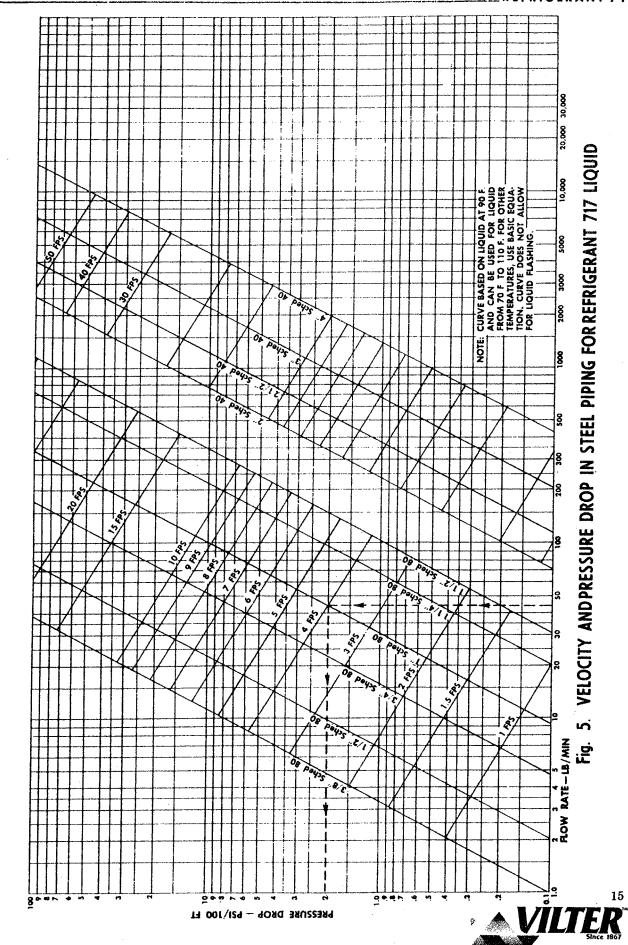


Fig. 1. SCHEMATIC PIPING LAYOUT FOR SAMPLE PROBLEM

11


Fig. 2. FLOW RATE PER TON OF REFRIGERATION FOR REFRIGERANT 717



13

mat, itin.

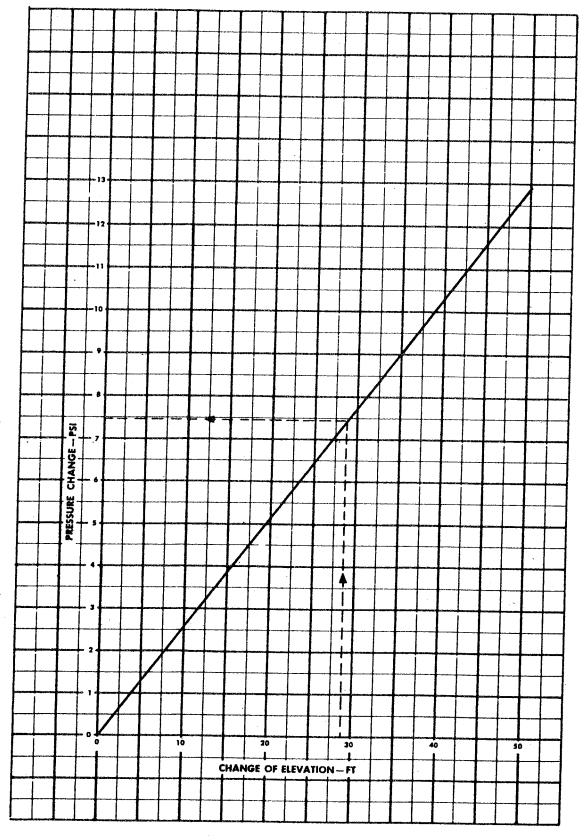


Fig. 6. RELATION OF PRESSURE-CHANGE TO ELEVATION-DIFFERENCE
FOR REFRIGERANT 717 LIQUID

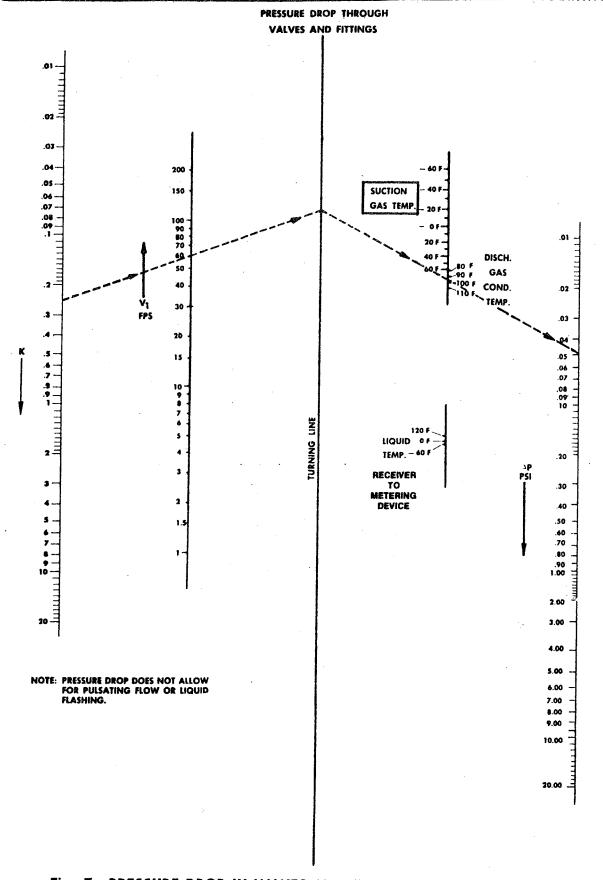
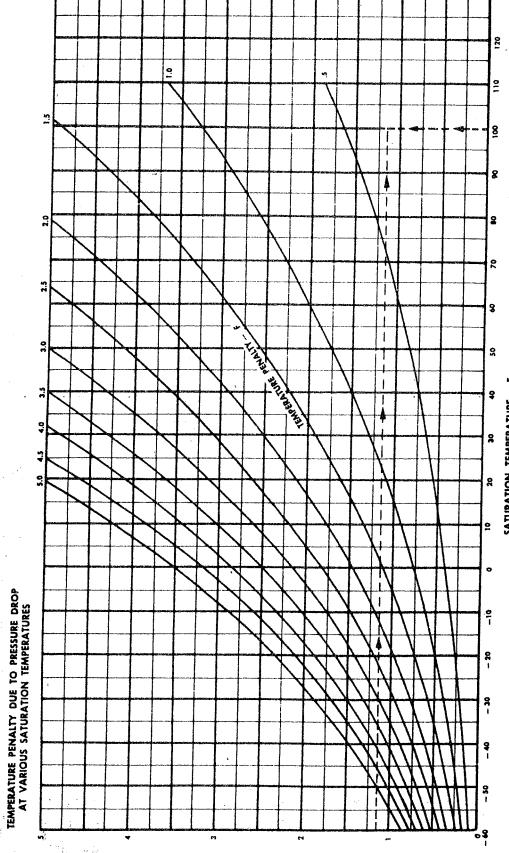



Fig. 7. PRESSURE DROP IN VALVES AND FITTINGS FOR REFRIGERANT 717

TEMPERATURE PENALTY DUE TO PRESSURE DROP FOR REFRIGERANT 717 ∞i Ę

SATURATION TEMPERATURE - F

TABLE 5
THERMODYNAMIC PROPERTIES OF REFRIGERANT 717 (AMMONIA)

Temp		sure	Volu Cu. Ft.			nsity – er Cu. Ft.		nthalpy- u per Lb		Entro Btu per (I		Temp
t	Absolute P	Gage p	Liquid V _f	Vapor v _g	Liquid 1/v _f	Vapor 1/v _g	Liquid h _f	Latent h _{fg}	Vapor hg	Liquid ^S f	Vapor S	ŧ
-60 -59 -58 -57 -56	5.55 5.74 5.93 6.13 6.33	18.6* 18.2* 17.8* 17.4* 17.0*	0.02278	44.73 43.37 42.05 40.79 39.56	43.91	0.02235 .02306 .02378 .02452 .02528	-21,2 -20.1 -19.1 -18.0 -17.0	610.8 610.1 609.5 608.8 608.2	589.6 590.0 590.4 590.8 591.2	-0.0517 0490 0464 0438 0412	1.4769 1.4741 1.4713 1.4686 1.4658	-60 -59 -58 -57 -56
-55 -54 -53 -52 -51	6.54 6.75 6.97 7.20 7.43	16.6* 16.2* 15.7* 15.3* 14.8*	0.02288	38.38 37.24 36.15 35.09 34.06	43.70	0.02605 .02685 .02766 .02850 .02936	-15.9 -14.8 -13.8 -12.7 -11.7	607.5 606.9 606.2 605.6 604.9	591.6 592.1 592.4 592.9 593.2	-0.0386 0360 0334 0307 0281	1.4631 1.4604 1.4577 1.4551 1.4524	-55 -54 -53 -52 -51
-50 -49 -48 -47 -46	7.67 7.91 8.16 8.42 8.68	14.3* 13.8* 13.3* 12.8* 12.2*	0.02299	33,08 32,12 31,20 30,31 29,45	43.49	0.03023 .03113 .03205 .03299 0.03395	-10.6 - 9.6 - 8.5 - 7.4 - 6.4	604.3 603.6 602.9 602.3 601.6	593.7 594.0 594.4 594.9 595.2	-0.0256 0230 0204 0179 -0.0153	1.4497 1.4471 1.4445 1.4419 1.4393	-50 -49 -48 -47 -46
-45 -44 -43 -42 -41	8.95 9.23 9.51 9.81 10.10	11.7* 11.1* 10.6* 10.0* 9.3*	0.02310	28.62 27.82 27.04 26.29 25.56	43.28	0.03494 .03595 .03698 .03804 .03912	- 5.3 - 4.3 - 3.2 - 2.1 - 1.1	600.9 600.3 599.6 598.9 598.3	595.6 596.0 596.4 596.8 597.2	-0.0127 0102 0076 0051 0025	1.4368 1.4342 1.4317 1.4292 1.4267	-45 -44 -43 -42 -41
-40 -39 -38 -37 -36	10.41 10.72 11.04 11.37 11.71	8.7* 8.1* 7.4* 6.8* 6.1*	0.02322	24.86 24.18 23.53 22.89 22.27	43.07	0.04022 .04135 .04251 .04369 .04489	0.0 1.1 2.1 3.2 4.3	597.6 596.9 596.2 595.5 594.8	597.6 598.0 598.3 598.7 599.1	0.0000 .0025 .0051 .0076 .0101	1.4242 1.4217 1.4193 1.4169 1.4144	-40 -39 -38 -37 -36
-35 -34 -33 -32 -31	12.05 12.41 12.77 13.14 13,52	5.4* 4.7* 3.9* 3.2* 2.4*	0.02333	21.68 21.10 20.54 20.00 19.48	42.86	0.04613 .04739 .04868 .04999 .05134	5.3 6.4 7.4 8.5 9.6	594.2 593.5 592.8 592.1 591.4	599.5 599.9 600.2 600.6 601.0	0.0126 .0151 .0176 .0201 .0226	1.4120 1.4096 1.4072 1.4048 1.4025	-35 -34 -33 -32 -31
-30 -29 -28 -27 -26	13.90 14.30 14.71 15.12 15.55	1.6* 0.8* 0.0 0.4 0.8	0.02345	18.97 18.48 18.00 17.54 17.09	42.65	0.05271 .05411 .05555 .05701 .05850	10.7 11.7 12.8 13.9 14.9	590.7 590.0 589.3 588.6 587.9	601.4 601.7 602.1 602.5 602.8	0.0250 .0275 .0300 .0325 .0350	1.4001 1.3978 1.3955 1.3932 1.3909	-30 -29 -28 -27 -26
-25 -24 -23 -22 -21	15.98 16.42 16.88 17.34 17.81	1.3 1.7 2.2 2.6 3.1	0.02357	16.66 16.24 15.83 15.43 15.05	42.44	0.06003 .06158 .06317 .06479	16.0 17.1 18.1 19.2 20.3	587.2 586.5 585.8 585.1 584.3	603.2 603.6 603.9 604.3 604.6	0.0374 .0399 .0423 .0448 .0472	1.3886 1.3863 1.3840 1.3818 1.3796	-25 -24 -23 -22 -21
-20 -19 -18 -17 -16	18.30 18.79 19.30 19.81 20.34	3.6 4.1 4.6 5.1 5.6	0,02369	14.68 14.32 13.97 13.62 13.29	42.22	0.06813 .06985 .07161 .07340 .07522	21.4 22.4 23.5 24.6 25.6	583.6 582.9 582.2 581.5 580.8	605.0 605.3 605.7 606.1 606.4	0.0497 .0521 .0545 .0570 .0594	1.3774 1.3752 1.3729 1.3708 1.3686	-20 -19 -18 -17 -16
-15 -14 -13 -12 -11	20.88 21.43 21.99 22.56 23.15	6.2 6.7 7.3 7.9 8.5	0.02381	12.97 12.66 12.36 12.06 11.78	42.00	0.07709 .07898 .08092 .08289 .08490	26.7 27.8 28.9 30.0 31.0	580.0 579.3 578.6 577.8 577.1	606.7 607.1 607.5 607.8 608.1	0.0618 .0642 .0666 .0690 .0714	1.3664 1.3643 1.3621 1.3600 1.3579	-15 -14 -13 -12 -11
-10 - 9 - 8 - 7 - 6	23.74 24.35 24.97 25.61 26.26	9.0 9.7 10.3 10.9 11.6	0.02393	11.50 11.23 10.97 10.71 10.47	41.78	0.08695 .08904 .09117 .09334 .09555	32.1 33.2 34.3 35.4 36.4	576.4 575.6 574.9 574.1 573.4	608.5 608.8 609.2 609.5 609.8	0.0738 .0762 .0786 .0809 .0833	1.3558 1.3537 1.3516 1.3495 1.3474	-10 - 9 - 8 - 7 - 6
- 5 - 4 - 3 - 2 - 1	26.92 27.59 28.28 28.98 29.69	12.2 12.9 13.6 14.3 15.0	0.02406	10.23 9.991 9.763 9.541 9.326	41.56	0.09780 .1001 .1024 .1048 .1072	37.5 38.6 39.7 40.7 41.8	572.6 571.9 571.1 570.4 569.6	610.1 610.5 610.8 611.1 611.4	0.0857 .0880 .0904 .0928 .0951	1.3454 1.3433 1.3413 1.3393 1.3372	- 5 - 4 - 3 - 2 - 1

^{*} Inches of mercury below one atmosphere

TABLE 5 (Continued) THERMODYNAMIC PROPERTIES OF REFRIGERANT 717 (AMMONIA)

Temp		ssure er Sq. In.		ume – t. per Lb.		ensity — , per Cu. Ft.		Enthalpy Stuper Li			py – Lb.) (° R)	Temp
t	Absolute P		Liquid V _f	Vapor v _g	Liquid 1/v _f	Vapor 1/v _g	<u> </u>	Latent		Liquid Sf	Vapor s g	t
0 1 2 3 4	30.42 31.16 31.92 32.69 33.47	15.7 16.5 17.2 18.0 18.8	0.02419	9.116 8.912 8.714 8.521 8.333	41.34	0.1097 .1122 .1148 .1174 .1200	42.9 44.0 45.1 46.2 47.2	568.9 568.1 567.3 566.5 565.8	611.8 612.1 612.4 612.7 613.0	0.0975 .0998 .1022 .1045 .1069	1.3352 1.3332 1.3312 1.3292 1.3273	0 1 2 3 4
5 6 7 8 9	34.27 35.09 35.92 36.77 37.63	19.6 20.4 21.2 22.1 22.9	0.02432	8,150 7,971 7,798 7,629 7,464	41.11	0.1227 .1254 .1282 .1311 .1340	48.3 49.4 50.5 51.6 52.7	565.0 564.2 563.4 562.7 561.9	613.3 613.6 613.9 614.3 614.6	0.1092 .1115 .1138 .1162 .1185	1,3253 1,3234 1,3214 1,3195 1,3176	5 6 7 8 9
10 11 12 13 14	38.51 39.40 40.31 41.24 42.18	23.8 24.7 25.6 26.5 27.5	0.02446	7.304 7.148 6.996 6.847 6.703	40.89	0.1369 .1399 .1429 .1460 .1492	53.8 54.9 56.0 57.1 58.2	561.1 560.3 559.5 558.7 557.9	614.9 615.2 615.5 615.8 616.1	0. 1208 .1231 .1254 .1277 .1300	1.3157 1.3137 1.3118 1.3099 1.3081	10 11 12 13 14
15 16 17 18 19	43.14 44.12 45.12 46.13 47.16	28.4 29.4 30.4 31.4 32.5	0.02460	6.562 6.425 6.291 6.161 6.034	40.66	0.1524 .1556 .1590 .1623 0.1657	59.2 60.3 61.4 62.5 63.6	557.1 556.3 555.5 554.7 553.9	616.3 616.6 616.9 617.2 617.5	0,1323 .1346 .1369 .1392 0,1415	1.3062 1.3043 1.3025 1.3006 1.2988	15 16 17 18 19
20 21 22 23 24	48.21 49.28 50.36 51.47 52.59	33.5 34.6 35.7 36.8 37.9	0.02474	5.910 5.789 5.671 5.556 5.443	40.43	0.1692 .1728 .1763 .1800 .1837	64.7 65.8 66.9 68.0 69.1	553.1 552.2 551.4 550.6 549.8	617.8 618.0 618.3 618.6 618.9	0.1437 .1460 .1483 .1505 .1528	1.2969 1.2951 1.2933 1.2915 1.2897	20 21 22 23 24
25 26 27 28 29	53.73 54.90 56.08 57.28 58.50	39.0 40.2 41.4 42.6 43.8	0.02488	5.334 5.227 5.123 5.021 4.922	40.20	0.1875 .1913 .1952 .1992 .2032	70.2 71.3 72.4 73.5 74.6	548.9 548.1 547.3 546.4 545.6	619.1 619.4 619.7 619.9 620.2	0.1551 .1573 .1596 .1618 .1641	1.2879 1.2861 1.2843 1.2825 1.2808	25 26 27 28 29
30 31 32 33 34	59.74 61.00 62.29 63.59 64.91	45.0 46.3 47.6 48.9 50.2	0.02503	4.825 4.730 4.637 4.547 4.459	39.96	0.2073 .2114 .2156 .2199 .2243	75.7 76.8 77.9 79.0 80.1	544.8 543.9 543.1 542.2 541.4	620.5 620.7 621.0 621.2 621.5	0.1663 .1686 .1708 .1730 .1753	1.2790 1.2773 1.2755 1.2738 1.2721	30 31 32 33 34
35 36 37 38 39	66.26 67.63 69.02 70.43 71.87	51.6 52.9 54.3 55.7 57.2	0.02518	4.373 4.289 4.207 4.126 4.048	39.72	0.2287 .2332 .2377 .2423 .2470	81.2 82.3 83.4 84.6 85.7	540.5 539.7 538.8 537.9 537.0	621.7 622.0 622.2 622.5 622.7	0.1775 .1797 .1819 .1841 .1863	1.2704 1.2686 1.2669 1.2652 1.2635	35 36 37 38 39
40 41 42 43 44	73.32 74.80 76.31 77.83 79.38	58.6 60.1 61.6 63.1 64.7	0.02533	3.971 3.897 3.823 3.752 3.682	39.49	0.2518 .2566 .2616 .2665 .2716	86.8 87.9 89.0 90.1 91.2	536.2 535.3 534.4 533.6 532.7	623.0 623.2 623.4 623.7 623.9	0. 1885 .1908 .1930 .1952 .1974	1.2618 1.2602 1.2585 1.2568 1.2552	40 41 42 43 44
45 46 47 48 49	80.96 82.55 84.18 85.82 87.49	66.3 67.9 69.5 71.1 72.8	0.02548	3.614 3.547 3.481 3.418 3.355	39. 24	0.2767 .2819 .2872 .2926 .2981	92.3 93.5 94.6 95.7 96.8	531.8 530.9 530.0 529.1 528.2	624.1 624.4 624.6 624.8 625.0	0.1996 .2018 .2040 .2062 .2083	1.2535 1.2519 1.2502 1.2486 1.2469	45 46 47 48 49
50 51 52 53 54	89.19 90.91 92.66 94.43 96.23	74.5 76.2 78.0 79.7 81.5	0.02564	3.294 3.234 3.176 3.119 3.063	39.00	0.3036 .3092 .3149 .3207 .3265	97.9 99.1 100.2 101.3 102.4	527.3 526.4 525.5 524.6 523.7	625.2 625.5 625.7 625.9 626.1	0.2105 .2127 .2149 .2171 .2192	1.2453 1.2437 1.2421 1.2405 1.2389	50 51 52 53 54
55 56 57 58 59	98.06 99.91 101.8 103.7 105.6	83.4 85.2 87.1 89.0 90.9	0.02581	3.008 2.954 2.902 2.851 2.800	38.75	0.3325 .3385 .3446 .3508 .3571	103.5 104.7 105.8 106.9 108.1	521.8 520.9 520.0	626.3 626.5 626.7 626.9 627.1	0.2214 .2236 .2257 .2279 .2301	1.2373 1.2357 1.2341 1.2325 1.2310	55 56 57 58 59

TABLE 5 (Continued) THERMODYNAMIC PROPERTIES OF REFRIGERANT 717 (AMMONIA)

Temp.		essure – per Sq. In.		ume –		ensity per Cu. Ft		Enthalp Btu per	•		tropy – (Lb.) (° R)	Temp
t	Absolute P		Liquid v _f	Vapor.		d Vapor					Vapor s	
60 61 62 63 64	107.6 109.6 111.6 113.6 115.7	92.9 94.9 96.9 98.9 101.0	0.02597	2.751 2.703 2.656 2.610 2.565		0.3635 .3700 .3765 .3832 .3899	109.1 110.1 111.1 112.0 113.1	3 517.5 5 516.5 6 515.	2 627.5 2 627.7 3 627.9	.2344 .2365 .2387	1,2278 1,2262 1,2247	
65 66 67 68 69	117.8 120.0 122.1 124.3 126.5	103.1 105.3 107.4 109.6 111.8	0.02614	2.520 2.477 2.435 2.393 2.352	38.25	0.3968 .4037 .4108 .4179 .4251	114.8 116.0 117.1 118.3 119.4	512.4 1 511.5 3 510.5	628.4 6 628.6 6 628.8	.2451 .2473 .2494		65 66 67 68 69
70 71 72 73 74	128.8 131.1 133.4 135.7 138.1	114.1 116.4 118.7 121.0 123.4	0.02632	2.312 2.273 2.235 2.197 2.161	38.00	0.4325 .4399 .4474 .4551 .4628	120.5 121.7 122.8 124.0 125.1	507.6 506.6 505.6	629.3 629.4 629.6	.2558 .2579 .2601	1.2140 1.2125 1.2110 1.2095 1.2080	70 71 72 73 74
75 76 77 78 79	140.5 143.0 145.4 147.9 150.5	125.8 128.3 130.7 133.2 135.8	0.02650	2,125 2,089 2,055 2,021 1,988	37.74	0.4707 .4786 .4867 .4949 .5031	126.2 127.4 128.5 129.7 130.8	502.7 501.7 500.7	630.1 630.2 630.4	0.2643 .2664 .2685 .2706 .2728	1.2065 1.2050 1.2035 1.2020 1.2006	75 76 77 78 79
80 81 82 83 84	153.0 155.6 158.3 161.0 -163.7	138.3 140.9 143.6 146.3 149.0	0.02668	1.955 1.923 1.892 1.861 1.831	37.48	0.5115 .5200 .5287 .5374 0.5462	132,0 133,1 134,3 135,4 136,6	497.7 496.7 495.7	630.8	0.2749 .2769 .2791 .2812 0.2833	1.1991 1.1976 1.1962 1.1947 1.1933	80 81 82 83 84
85 86 87 88 89	166.4 169.2 172.0 174.8 177.7	151.7 154.5 157.3 160.1 163.0	0.02687	1.801 1.772 1.744 1.716 1.688	37.21	0.5552 0.5643 0.5735 0.5828 0.5923	137.8 138.9 140.1 141.2 142.4	493.6 492.6 491.6 490.6 489.5	631.4 631.5 631.7 631.8 631.9	0.2854 .2875 .2895 .2917 .2937	1.1918 1.1904 1.1889 1.1875 1.1860	85 86 87 88 89
90 91 92 93 94	180.6 183.6 186.6 189.6 192.7	165.9 168.9 171.9 174.9 178.0	0.02707	1.661 1.635 1.609 1.584 1.559	36.94	0.6019 0.6116 0.6214 0.6314 0.6415	143.5 144.7 145.8 147.0 148.2	488.5 487.4 486.4 485.3 484.3	632.0 632.1 632.2 632.3 632.5	0.2958 .2979 .3000 .3021 .3041	1.1846 1.1832 1.1818 1.1804 1.1789	90 91 92 93 94
95 96 97 98 99	195.8 198.9 202.1 205.3 208.6	181.1 184.2 187.4 190.6 193.9	0.02727	1.534 1.510 1.487 1.464 1.441	36.67	0.6517 0.6620 0.6725 0.6832 0.6939	149.4 150.5 151.7 152.9 154.0	483.2 482.1 481.1 480.0 478.9	632.6 632.8 632.9 632.9	0.3062 .3083 .3104 .3125 .3145	1.1775 1.1761 1.1747 1.1733 1.1719	95 96 97 98 99
100 101 102 103 104	211.9 215.2 218.6 222.0 225.4	197.2 200.5 203.9 207.3 210.7	0.02748	1.419 1.397 1.375 1.354 1.334	36.40	0.7048 0.7159 0.7270 0.7384 0.7498	155,2 156,4 157,6 158,7 159,9	477.8 476.7 475.6 474.6 473.5	633.0 633.1 633.2 633.3 633.4	0.3166 .3187 .3207 .3228 .3248	1.1705 1.1691 1.1677 1.1663 1.1649	100 101 102 103 104
105 106 107 108 109	228.9 232.5 236.0 239.7 243.3	214.2 217.8 221.3 225.0 228.6	0.02769	1.313 1.293 1.274 1.254 1.235	36.12	0.7615 0.7732 0.7852 0.7972 0.8095	161.1 162.3 163.5 164.6 165.8	472.3 471.2 470.1 469.0 467.9	633.4 633.5 633.6 633.6 633.7	0.3269 .3289 .3310 .3330 .3351	1.1635 1.1621 1.1607 1.1593 1.1580	105 106 107 108 109
110 111 112 113 114	247.0 250.8 254.5 258.4 262.2	232.3 236.1 239.8 243.7 247.5	0.02790	1.217 1.198 1.180 1.163 1.145		0.8219 0.8344 0.8471 0.8600 0.8730	167.0 168.2 169.4 170.6 171.8	466.7 465.6 464.4 463.3 462.1	633.7 633.8 633.8 633.9 633.9	0.3372 .3392 .3413 .3433 .3453	1.1566 1.1552 1.1538 1.1524 1.1510	110 111 112 113 114
115 116 117 118 119	266.2 270.1 274.1 278.2 282.3	251.5 255.4 259.4 263.5 267.6	0.02813	1.128 1.112 1.095 1.079 1.063		0.8862 0.8996 0.9132 0.9269 0.9408	173.0 174.2 175.4 176.6 177.8	460.9 459.8 458.6 457.4 456.2	633.9 634.0 634.0 634.0 634.0	0.3474 .3495 .3515 .3535 .3556	1.1497 1.1483 1.1469 1.1455 1.1441	115 116 117 118 119
120	286.4	271.7	0.02836	1.047	35.26	0.9549	179.0	455.0	634.0	0.3576	1.1427	120

TABLE 6 AMMONIA FLOW RATE POUNDS/MINUTE/TON REFRIGERATION

Temp.	Corres.		Boo	ster D	schar	ge Pres	sure (Psig)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	I	Conc	lensing	Discl	arge F	ressur	e (Psig)
of	Suction	10	20	30	40	50	60	70	80	90	100	120	140	160	180	200	220
Suction	Pressure		Corres	pondin	g Disc	harge	Tempe	rature	(°F)		Corres	pondin	g Disc	harge 1	Cemper	ature (°	F)
(°F)	(Psig)	-8.5	5.5	16.6	25.8	33.8	40.9	47.3	53.2	58.5	63.5	72.6	80.7	88.0	94.6	100.8	106.6
-60	18.6*	.367	.377	.386	.394	.401	.407	.414	.419	-			-				
~50	14.3*	.364	.374	.383	.391	.398	.404	.410	.416	.411	1	l	[l			l
-40	8.7*	.362	.372	.380	.388	.394	.401	.407	.412	.408	.413	1		1	i		
-30	1.6*	.359	.369	.378	.385	.392	.398	.404	.409	.405	.410	.418	.427	1		ł	
-20	3.6	.357	.367	.375	.382	.389	.395	.401	.406	.402	.406	.415	.423	.431	.438	1	
-10	9.0	.355	.364	.372	.380	.386	.393	.398	.404	.399	.404	.412	.421	.428	.435	.442	
0	15,7		.362	.370	.378	.384	.390	.396	.401	.397	.401	.410	.417	.425	.432	.439	.446
10	23.8			.368	.375	.382	.388	.393	.398	.394	.398	.407	.415	.422	.429	.436	.442
20	33.5				.373	.380	.386	.391	.396	.392	.396	.404	.412	.419	.427	.433	.440
30	45.0	ļ				.378	.383	.389	.393	.390	.394	.402	.410	.417	.424	.431	.437
40	58.6						.382	.387	.392	.388	.392	.400	.408	.415	.422	.428	.435

^{*}Inches mercury below one atmosphere.

TABLE 7 AMMONIA FLOW RATE CUBIC FEET/MINUTE/TON REFRIGERATION

MS	C	I	Boo	ster Di	scharg	e Pres	sure (Psig)			Cond	ensing	Disch	arge P	ressure	(Psig)	
Temp.	Corres. Suction	10	20	30	40	50	60	70	80	90	100	120	140	160	180	200	220
Suction	Pressure	C	orrespo	onding	Dische	arge Te	empera	ture (°	F)	(Corresp	onding	Disch	arge T	етрега	ture (°I	رة (۲)
(°F)	(Psig)	-8.5	5.5	16.6	25.8	33.8	40.9	47.3	53.2	58.5	63.5	72.6	80.7	88.0	94.6	100.8	106.6
-6Ó	18.6*	16.4	16.9	17.3	17.6	17.9	18.2	18.5	18.8								
50	14.3*	12.1	12.4	12.7	13.0	13.2	13.4	13.6	13.8	13.6		l	1	ł		ļ	
-40	8.7*	9.00	9.25	9.45	9.65	9.80	9.98	10.1	10.3	10.1	10.3	1	l			l	
-30	1.6*	6.82	7.00	7.17	7.30	7.44	7.55	7.66	7.76	7.68	7.78	7.93	8.11			1	İ
-20	3.6	5.25	5.39	5.51	5.61	5.71	5.80	5.89	5.96	5.90	5.96	6.10	6.21	6.33	6.44		i
-10	9.0	4.08	4.18	4.28	4.37	4.44	4.52	4.58	4.65	4.59	4,65	4.74	4.84	4.92	5,00	5.08	
o	15.7		3.30	3,38	3.45	3,50	3.56	3.61	3,66	3,62	3.66	3.74	3.80	3.88	3.94	4.00	4.07
10	23.8			2.69	2.74	2.79	2.83	2.87	2.91	2.88	2.91	2.98	3.03	3.08	3.13	3.19	3.23
20	33.5	İ			2.21	2.25	2,28	2.31	2,34	2.32	2.34	2.39	2.44	2.48	2.53	2.56	2.60
30	45.0					1.82	1.85	1,88	1.90	1.88	1.90	1.94	1.98	2,02	2.05	2.08	2.11
40	58.6	- 1	- 1				1.52	1,54	1.56	1.54	1.56	1.59	1.62	1.65	1.68	1.70	1,73

^{*} Inches mercury below one atmosphere.

Figures to left of heavy line are based on booster flow-rate of two-stage system with tiquid subcooling to within 10°F of intermediate. Figures to right of heavy line are based on single stage.

REFRIGERANT 12 PIPING DATA

This section presents useful data for the proper sizing of Refrigerant 12 (Dichlorodifluoromethane) piping. Its purpose is not to set design standards, but to provide the latest pipe-sizing information available. It also discusses various factors which determine the allowable pressure drops in different portions of a refrigerant piping system.

Basis of Charts and Tables

The pressure-drop charts given herein for single or high stage applications are based on calculations using the commonly accepted Darcy-Weisbach pressure-drop formula and Darcy friction factors from the Moody Chart (see appendix, Sections A-III and A-IV). Capacity tables for intermediate or low stage applications are based on calculations using Fanning's equation for friction loss.

Pipe Lines. Suction line velocity and pressuredrop values are for saturated vapor temperature conditions, and the discharge line values are at pressures corresponding to the condensing temperatures indicated, and superheated to 175 F.

Liquid line velocities and pressure drops are for saturated Refrigerant 12 liquid at 90 F and can be used with reasonable accuracy for temperatures between 70 F and 110 F.

Valves and Fittings. Pressure losses through refrigerant valves and fittings are given in a table, in the form of "K" factors (velocity heads). These "K" factors are representative, using average values obtained from various tests and manufacturers' ratings. "K" factors vary widely for a given type and size of valve or fitting, depending on the construction or internal design.

For a simplified determination of these pressure drops, "equivalent lengths" of valves and fittings are given in a table. These "equivalent lengths" have been derived, using the "K" factors in conjunction with friction factors taken from the Moody Chart at Reynolds Numbers in the range of normal usage, for both vapor and liquid lines.

"Equivalent lengths" result in a sacrifice of accuracy, depending on the temperature, state and velocity of the refrigerant. "K" factors give more reliable pressure drop data. For greater accuracy, particularly for valves, "K" factors should be obtained from the manufacturer.

Pressure-Drop Limitations (Pipe-Sizing Factors)

Vapor line pressure drops result in an increase in power input to the compressor and a decrease in refrigeration capacity. The most critical line with respect to this is the suction line, as losses in it have the greatest effect on the system. An

economic study, involving power input, system capacity, size of system components—evaporator and condenser—and installation cost of pipe and pipe insulation, can best determine the optimum pressure-drop allowance. Experience has shown that the allowable pressure drop for suction lines should decrease with suction temperature. Discharge lines may have a greater pressure drop, for a specified temperature penalty, than suction lines.

Suction line pressure drop increases the volume of gas to be handled by the compressor, increases the ratio of discharge pressure to suction pressure, and reduces the volumetric efficiency of the compressor. This results in less capacity from a given compressor and more power per ton of refrigeration.

The effect of a particular amount of suction line pressure drop is greater as the suction pressure decreases. Fig. 11 indicates this in showing that a particular pressure drop results in a greater "temperature penalty" at a lower saturation temperature. The result of suction line pressure drop is that the compressor operates from a suction condition corresponding to the actual evaporator temperature minus the temperature penalty.

Larger suction line sizes reduce the pressure drop and, therefore, reduce the compressor capacity required and also the power per ton. However, the larger pipe size increases its cost and also its installation and insulation cost. The best size from an economic consideration can be determined by an economic study with the cost of the various factors available.

Discharge line pressure drop also increases the ratio of discharge pressure to suction pressure and reduces the volumetric efficiency of the compressor. This results in less capacity from a given compressor and more power per ton of refrigeration.

The effect of a particular amount of discharge line pressure drop is less as the discharge saturation temperature increases, but the difference is not very great in the range of saturation temperatures corresponding to usual discharge pressures. Fig. 11 indicates this by showing the relatively small change in "temperature penalty" for a particular pressure drop at the temperatures corresponding to saturation at normal discharge pressures. Fig. 11 also indicates the smaller "temperature penalty" for a given pressure drop in the saturation temperature range corresponding to usual discharge conditions as compared to the range corresponding to usual suction con-

ditions. Because of this, economic considerations usually result in the use of a larger pressure drop as the basis of design for a discharge line than that which would be used for a suction line.

Liquid line pressure drop results in no direct penalty in capacity or power. It is important that the pressure loss not be such as to produce flash gas. If the pressure loss or liquid lift are such as to result in flash gas, the required capacities of liquid solenoid valves and expansion valves must be increased. Liquid lines cooler than ambient will take in heat and may sweat.

Higher liquid line velocities should be used with caution because of possible stresses due to rapid closing of any liquid valve. Solenoid valves or solenoid pilot-controlled valves, almost always are rapid-closing.

When the liquid is to flow upward in a riser, or when pressure drop may cause flashing, subcooling can be employed to eliminate flash gas in the supply to the expansion valves. Subcooling may make insulation for the liquid line desirable or necessary.

Basis of Design

Suction lines should generally be selected for a pressure drop of 1 to 3 psi per 100 feet of pipe for temperatures above 20 F. On the other hand, pressure drop should range from 2 to 0.2 psi per 100 feet of pipe at temperatures between +20 F and -60 F. In other words, pressure-drop allowance should decrease with decreasing suction temperatures.

Discharge lines should generally be selected for a nominal pressure-drop between 2 and 5 psi per 100 feet of pipe at any normal condensing temperature.

Liquid lines are normally sized for a low pressure drop to avoid flash gas. The design conditions most generally accepted are:

- a. Condenser to receiver: Velocity of 120 fpm or less.
- b. Receiver to system: Velocity range is generally limited to 300 fpm when a solenoid or snap-acting valve is used. When a snapacting valve is not employed, velocities somewhat higher than 300 fpm may be employed. Within limits of above velocities, selection on the basis of 2 psi per 100 feet is practiced.
- c. The liquid line between the expansion valve and the evaporator is often very short, with few restrictions, and may then be the same size as the expansion valve outlet or the evaporator inlet. However, unless it is very short, consideration should be given to the size of this line which will be carrying both gas and liquid. Common practice for relatively short lines, containing a service valve. is to make them one size larger than the liquid line.

How to Use Charts

1. Tables 1-A and 1-B permit quick selection of suction lines applicable to the conditions listed.

Table 1-A gives suction line capacities (tons) for intermediate or low stage applications. The values in this table are based on 0°F. saturated discharge temperature. For intermediate or low stage suction line capacities at other saturated discharge temperatures, multiply table value by proper line capacity multiplier as given in Table A.7 in appendix.

Table 1-B gives suction line capacities (tons) for single or high stage applications at various suction temperatures, pressure drops, and at 105°F. saturated condensing temperature. Interpolation may be used between suction temperatures to determine line capacity at a fixed pressure drop. (Do not interpolate between pressure-drop columns.) For other condensing temperatures and other pressure-drop limitations, follow the steps outlined below for detailed sizing of lines.

2. Table 2 can be used to determine the capacities of discharge and liquid lines at a specified pressure drop or velocity, as listed. For temperatures other than 105 F condensing and 40 F suction, these capacities are only approximate.

The following steps are used for detailed sizing of Refrigerant 12 piping:

- Determine the flow rate, lb/(min) (ton), from Fig. 2. Use saturated evaporator temperature and liquid temperature, disregarding any suction superheating. Total flow equals lb/(min) (ton) times system tonnage.
- 4. Enter Fig. 3 or Fig. 6, depending on whether the lines are steel or copper, and determine the pressure drop, psi per 100 ft, for the total flow. (Figs. 3 and 6 are used for suction and discharge lines.) The pressure drop through any size line is found by projecting vertically, from the flow rate on the lower scale, to the intersection with the line size to be used. At this intersection, follow the horizontal line to the right and intersect with the vapor temperature line, and then project upward to the top scale to read the pressure drop. Prorate the pressure drop according to the actual length, using either the net length of straight pipe or the straight pipe plus the equivalent length of valves and fittings. If net length of straight pipe is used, determine the pressure drop for valves and fittings from Fig. 10, using appropriate "K" factors from Table 3 and the vaporline velocity (See Step 5).
- 5. Using the total refrigerant flow, lb per min, determine the velocity for suction and discharge lines in Fig. 4 or Fig. 7, depending on whether the lines are steel or copper. These charts are read in the same manner as Fig. 3 and Fig. 6.

- 6. For liquid lines, determine the pressure drop and velocity, using either Fig. 5 or Fig. 8, depending on the type of pipe used. The liquid-flow rate in lb per min, as read on the lower scale, is projected upward to the intersection of a given pipe size. The velocity in ft per sec can be read at this point and a pressure drop in psi per 100 ft equivalent length can be read on the ordinate scale. (The total flow for liquid lines is the same as that in the vapor lines as found in Step 3.) Prorate the pressure drop, using the ratio of actual pipe length versus 100 ft. Valves and fittings in liquid lines are treated in the same manner as outlined in Step 4 for vapor lines.
- 7. Fig. 9 is used to determine the pressure drop (or gain) in a liquid line when there is an appreciable change in elevation between the condenser or receiver and the evaporator.
- 8. Fig. 11 is used to determine the temperature penalty for the various refrigerant lines, using the pressure drops determined in the steps above.

Pulsating Flow

Pulsating flow in refrigerant lines causes increased pressure losses beyond those indicated by Fig. 3 and Fig. 6, which are based on steady flow.

Reciprocating compressors create pulsating flow in both discharge and suction lines. However, because gas density and the pressure-pulsation amplitude are both greater in the discharge line, the added frictional loss due to pulsation is also greater in the discharge line. For the same reasons, the additional pressure loss due to pulsating flow is greater for a single-cylinder compressor than for a multi-cylinder compressor. Pulsation is greater as the compression ratio increases.

The refrigerant piping and other components in the system, such as valves, fittings, condenser, evaporator, etc., attenuate the pulsation, resulting in an energy loss that is only slightly above the frictional loss that occurs when the flow is steady. Use of a muffler in the discharge line, close to the compressor, reduces the friction loss in the line downstream from the muffler. Of course, the frictional loss of the muffler itself must be considered in the system design.

SAMPLE PROBLEM

GIVEN

100 tons refrigeration 40 F evaporator temperature 105 F condensing (liquid) temperature Piping layout as shown in Fig. 1

Select discharge, liquid and suction lines Determine compressor operating conditions

NOTE: For the purpose of illustration, copper tubing will be assumed throughout. However, for economic or other reasons, good practice might employ all copper, all steel, or some copper and some steel, piping.

SOLUTION

From Fig. 2, at 40 F evaporator temperature and 105 F liquid temperature, the refrigerant flow rate = 4.07 lb/(min) (ton).

Refrigerant circulation = $100 \text{ tons } \times 4.07$. lb/(min) (ton) = 407 lb/min.

DISCHARGE LINE

Table 2 indicates 35%" OD copper tube is adequate for 113 tons refrigeration at 2 psi/100 ft.

Pressure Drop in Pipe:

From Fig. 6, 407 lb/min, $3\frac{5}{8}$ " OD copper tube, 105 F condensing temperature, pressure drop = 1.6 psi/100 ft.

Pressure drop for 45 ft of pipe $=45/100 \times 1.6$ = 0.72 psi

Pressure Drop in Fittings:

From Fig. 7, velocity = 40 fps. From Table 3, 35%" OD long radius ell (sweat fitting) "K" factor = 0.23.

From Fig. 10, pressure drop per ell — 0.11 psi.

Pressure drop for 3 ells = $3 \times 0.11 = 0.33$ psi Total pressure drop = 1.05 psi

Temperature Penalty:

From Fig. 11, 1.05 psi, 105 F saturated temperature, temperature penalty = 0.0

= 0.60 F

LIQUID LINES

Condenser to Receiver:

Select line size so that velocity is 120 fpm or less.

Using Table 2, select $3\frac{1}{8}$ " OD copper tube. Fig. 8 gives velocity of 1.8 fps = $60 \times 1.8 = 108$ fpm. Because of gravity flow, no pressure drop need be calculated.

Receiver to Expansion Valve:

Observe upper velocity limit of 300 fpm in selecting this portion of liquid line.

Using Table 2, select 21/8" OD copper tube. Fig. 8 gives velocity of 4 fps = 240 fpm.

Pressure Drop in Pipe:

From Fig. 8, 407 lb/min, 21/8" OD copper tube, pressure drop = 1.25 psi/100 ft.

Pressure drop for 28 ft of pipe

 $=28/100 \times 1.25$

= 0.35 psi

Pressure Drop in Valves and Fittings:

From Fig. 8, 407 lb/min, 21/8" OD copper tube, velocity = 4 fps. From Table 3, 21/8" OD long radius ell (sweat fitting), "K" factor = 0.25.

From Fig. 10, pressure drop for 3 ells (enter nomograph with $3 \times 0.25 = 0.75$ combined "K" factor)

From Table 3, 21/8" OD angle valve (sweat fitting), "K" factor = 2.9.

From Fig. 10, pressure drop for angle valve

Total pressure drop

== 0.40 psi =0.85 psi

== 0.10 psi

Expansion Valve to Evaporator:

As a rule of thumb, increase the line one size after the expansion valve, giving a line size of 25/8" OD.

SUCTION LINE

From Table 1-B, select 41/4" OD copper tube, which is adequate for 106 tons of refrigeration with a pressure drop of 2

Pressure Drop in Pipe:

From Fig. 6, 407 lb/min, 41/8" OD copper tube, 40 F suction temperature, pressure drop = 1.8psi/100 ft.

Pressure drop for 27 ft of pipe $= 27/100 \times 1.8$

= 0.49 psi

Pressure Drop in Fittings:

From Fig. 7, velocity = 68 fps. From Table 3, 41/8" OD long radius ell (sweat fitting) "K" factor = 0.22.

From Fig. 10, pressure drop per ell = 0.12 psi

Pressure drop for 2 ells $= 2 \times 0.12$

Total pressure drop

= 0.24 psi

 $= \overline{0.73}$ psi

Temperature Penalty:

From Fig. 11, 0.73 psi. 40 F saturated temperature, temperature penalty

= 0.8 F

COMPRESSOR SELECTION

The temperature equivalents of pressure drops in the discharge and suction lines require selecting the compressor to operate at the following conditions:

Discharge temperature =

105 F + 0.6 F = 105.6 F

Suction temperature =

40 F - 0.8 F = 39.2 F

TABLE 1-A. SUCTION LINE CAPACITIES—TONS

(For Intermediate or Low Stage Applications)

Refrigerant and ΔT	Line Size			Su	ction Line	•			
Equivalent of Friction Drop	Type L			Su	ction Ten	np F			Second Stage Discharge
	Copper OD	-90	-80	-70	-60	-50	-40	-30	and Liquid Lines
Refrigerant 12 2 F Δ T Per 100 ft Equiv. Length	1/2 3/8 1/8 1/8 1/8 2/8 2/8 2/8 3/8 4/8 6/8		0.24 0.42 0.67 1.40 2.4 3.9 5.9 8.5 15.1 25.8	0.3 0.6 0.9 1.9 3.3 5.4 8.2 11.7 20.8 35.4	0.2 0.4 0.8 1.2 2.5 4.5 7.3 10.8 15.6 27.8 47.2	0.3 0.6 1.1 1.7 3.5 6.1 10.0 15.0 21.5 38.5 65.4	0.4 0.8 1.4 2.2 4.6 8.0 13.0 19.5 28.0 50.0 85.0	0.5 1.0 1.7 2.7 5.7 10.0 16.2 24.3 35.0 62.5 106.0	See Table 2

NOTES:

(1) Values based on 0 F saturated discharge temp. For capaci-(2) For other ΔT's and Equivalent Lengths, L_a
(2) For other ΔT's and Equivalent Lengths, L_a
Line Capacity (Tons)

= Table Tons $\times \left(\frac{100}{L_{\bullet}} \times \frac{\text{Actual } \Delta T \text{ Loss Desired}}{\text{Table } \Delta T \text{ Loss}}\right)^{0.65}$

(3) For other Tons and Equivalent Lengths in a given pipe Bize.

$$\Delta T = \text{Table } \Delta T \times \frac{L_{\bullet}}{100} \times \left(\frac{\text{Actual Tons}}{\text{Table Tons}}\right)^{1.8}$$

(4) For pressure drop (psi) corresponding to Δ T, refer to Refrigerant properties, Table 5.

(5) Size low stage (Booster) discharge lines same as equivalent single stage suction lines (see Table 1-B).

SUCTION PIPING

TABLE 1-B. SUCTION LINE CAPACITIES-TONS1

(For Single or High Stage Applications)

	· · · · · · · · · · · · · · · · · · ·	— i				-				-				· · · · · · · · · · · · · · · · · · ·			****			erakea (ma	CO-CHICAGO IN CO.
	1415		Saturated Suction Temperature—F																		
	LINE SIZE ² nches)		-	- 40				20				0				20				40	
						-	Trial District	erence de National	Pres	sure	Drot	, PS	Per	100 F	t		THE STATE	***************************************	********	it dermine gen	***************************************
IPS	OD	1/2	1	2	3	1/2	1	2	3	1/2	1	2	3	1/2	1	2	3	1/2	1	2	3
·	1/2 5/8			0.2	0 0 . 2!			-0.2	80.35		0.2	50.3	0.2	4	0.32	0.25	0.31	0 28	0 41	0.31	0.39
1/2	3/4	-			4 0 . 29 5 0 . 44	0.2	0.2 20.3	20.3	20.39 70.59		-10.2	90.4	10.5	110.26	:0.37	0.53	10.66	0.32	0.4	0 6F	0 81
3/4	1/6	0.2	5 0.3 4 0.3	7 0.53 5 0.51	0.67	0.3	0.50 30.47	0.73	0.91 0.83	0.45 0.43	0.6	50.95	1.19	0.57	0.84	1.22	1.51	0.72 0.69	1.05	1.54	1.89
1	11/4	0.5 0.4	10.73	0.96	0 1.36	0.69 0.63	9:1.00 30.90	1.47	1.85 1.58	0.91 0.82	1.32	2 1.94 7 1.67	2.42	1.17 1.05	1.69	2.47 2.14	3.10	1.46 1.30	2.14	3.14 2.65	3.91 3.27
	13/8	-4	-	-	-[ļ			3.22			.		ļ						l	
11/4	15%	11.4	412.09	13.00	3.78	11.92	2.82	4.10	3.24 5.10	2.54	3.68	5 37	6 62	13 25	4 70	6 90	8 46	A 05	K 02	2 65	10 7
1½ 2	21/8	12.9	4 4.35	6.30	17.80	4.01	5.80	8.44	4.87 10.6 9.5	5.28	7.70	111.1	13.8	16.70	9:75	14.2	17.6	8.47	12.3	17.9	22 1
	25/4	5.2	77.71	11.2	13.9	7.10	10.4	15.1	18.7	3.44	13.7	19.6	24.5	12.0	17.4	25.4	 31.0	 15 0	21 9	31 5	39 3
2½ 3	31/2	8.53	3 12.4	17.9	22.4	11.3	16.6	23.9	14.9 29.9 26.5	5.0	21.8	31.4	39.3	19.0	27.8	40.5	49.9	23.8	34.9	50.5	62.6
J .	35/2	12.7	18.4	26.8	32.9	16.9	24.5	35.8	44.42	2.2	32.1	46.7	57.9	28.5	41.2	59.3	43.5 74.1	35.6	30.7 51.6	44.3 75.0	54.0 92.0
4	41/8	17.7	25.8 23.8	37.4 32.8	46.3 41.2	23.7 21.8	34.6 31.4	50.1 44.4	62.33 55.52	1.4	45.8 40 6	65.5 57.2	82.0 70.7	40.0 36.2	57.7 51.8	83.5	105	50.3	72.5	106	130
5	51/8	132. 1	46.3	67.0	83.2I	42.7	62.3	90.7	1135 99.35	6.1	81.3	119	146	71.7	103	150	186	R9 7	130	189	233
J	61/8	51.2	74.5	108	134	69.4	100	145	1809	1.0	131	190	236	115	165	240	300	145	209	300	
6 8 10		99.5 181	140 258	199 361	245 446	130 239	186 338	262 480	159 8 322 588	170 310	242 438	339 618	422 759	216 395	306 553	435 788	965	268 489	381 689	970	669
12	•				706	382	538	765	936	490	695	984	1210	623	882	1260	1550	774	1093	1548	1890

NOTES: 1 Based on fluid flow at 105 F saturated condensing temperature

^{2 &}quot;IPS" data based on Schedule 40 steel piping "OD" data based on Type L copper tubing

DISCHARGE AND LIQUID PIPING

TABLE 2. DISCHARGE AND LIQUID LINE CAPACITIES—TONS

			DISCH	ARGE LINES		rıбnı	D LINES
	LINE SIZE ² Inches)	Name and the state of the state	Tempe	rature 175 F		To Receiver	To System
				sure Drop /100 ft.		Velocity fpm	Pressure Drop Psi/100 ft
IPS	OD	1/2	1	2	3	100	2
1/2	1/2 5/8	0.42 0.48	0.33 0.62 0.70	0.48 0.90 0.98	0.60 1.13 1.21	3.18 3.20	4.23 3.62
	3/4	0.73	1.06	1.54	1.92	4.77	7.25
3/4	½8 1½8	1.11 1.02 2.26	1.62 1.46	2.36 2.06	2.92 2.54	6.61 5.90	11.2 8.17
1	13%	1.94 3.96	3.30 2.78 5.72	4.80 3.96 8.25	6.02 4.80 10.3	11.2 9.85 17.1	23.1 16.1 40.0
11/4		3.98	5.72	8.15	9.95	17.5	34.4
1½	15% 21/8	6.27 5.97 13.0	9.10 8.45 18.8	13.4 12.1	16.5 14.8	24.3 24.1	64.0 52.6
2	2.78	11.6	16.6	27.3 23.4	34.0 29.0	42.3 45.7	133 123
21/2	25/8	23.1 18.4	33.7 26.6	48.0 37.4	60.2 45.5	65.1 65.5	236 197
3	3½ 3½	36.9 32.4 54.6	53.6 46.2 79.2	77.5 65.1 113	95.5 80.0 140	93.0 101 126	376 350 565
4	41/8	76.7 67.1	111 94.7	160 135	198 165	163 174	795 712
5	5½ 6½	138 122 222	199 172 320	288 244 455	357 298 570		
6 8 10		195 398 725	280 573 1030	394 810 1450	480 985 1770		
12		1145	1625	2310	2830		

NOTES: 1 Based on fluid flow at 105 F saturated condensing temperature and 40 F saturated evaporating temperature 2 "IPS" data based on Schedule 40 steel piping except that liquid lines 1½" and smaller are Schedule 80 "OD" data based on Type L copper tubing

VALVES AND FITTINGS K-FACTORS

TABLE 3. "K-FACTORS" (VELOCITY HEADS) ' FOR VALVES AND FITTINGS

						FERRO	US VAI	VES A	ND FIT	TINGS ²	·	37 d 81/10 02 lack and				
LINE	LINE GLOBE VALVE		ANGLE	VALVE	SHOR	SHORT RADIUS ELL			LONG-RADIUS ELL			E, LINE-FL	.0w	TEE, BRANCH-FLOW		
(Inches) IPS	Screwed	Flanged	Screwed	Flanged	Screwed	Flanged	Welded	Screwed	Flanged	Welded	Screwed	Flanged	Welded	Screwed	Flanged	Welded
1½ 3¼ 1	15 11 9.3	 15.5	8.4 5.7 4.3	5.0	2.1 1.7 1.4	0.43	0.46	0.9 0.73	0.40	0.32	0.9 0.9 0.9	0.26	0.43	2.4 2.0 1.8	1.0	1.37
1¼ 1½ 2 2½	8.4 7.8 7.0	12.8 11.5 9.9 9.0	3.5 2.9 2.2	4.0 3.4 2.8 2.5	1.3 1.2 1.0	0.40 0.39 0.36 0.34	0.42 0.40 0.38 0.37	0.60 0.52 0.40	0.37 0.34 0.30 0.27	0.29 0.27 0.25 0.24	0.9 0.9 0.9	0.24 0.22 0.19 0.17	0.36 0.31 0.28 0.26	1.7 1.5 1.4	0.90 0.88 0.80 0.75	1.31 1.27 1.17 1.13
3 4 5 6		8.3 7.5 7.0 6.7	 	2.4 2.3 2.3 2.3	 	0.33 0.31 0.30 0.28	0.36 0.35 0.34 0.32		0.25 0.22 0.20 0.18	0.23 0.22 0.21 0.20	 	0.16 0.14 0.13 0.12	0.24 0.22 0.19 0.18		0.72 0.68 0.64 0.60	1.10 1.05 1.01 0.98
8 10 12		6.2 6.0 6.0	 	2.3 2.3 2.3		0.27 0.25 0.25	0.31 0.30 0.29		0.15 0.14 0.13	0.19 0.18 0.18		0.10 0.09 0.08	0.15 0.14 0.13		0.57 0.52 0.50	0.93 0.90 0.88

NON-FERROUS VALVES AND FITTINGS 3, 4, 5

LINE SIZE	GLOBE VALVE	ANGLE VALVE	SHORT-RADIUS ELL	LONG-RADIUS ELL	TEE, LINE-FLOW	TEE, BRANCH-FLOV
(Inches) OD	Flare or Sweat	Flare or Sweat	Flare or Sweat	Flare or Sweat	Flare or Sweat	Flare or Sweat
1/2	37	12.8	2.5	1.7	0.9	3.5
5 ∕8	28	9.9	2.2	1.5	0.9	3.2
3/4	23	7.8	2.0	1.4	0.9	3.0
3/4 1/8	19	6.7	1.9	1.3	0.9	2.8
11/8	15.0	5.0	0.46	0.32	0.43	1.37
11/8	13.4	4.4	0.42	0.29	0.36	1.33
15/8	12.0	3.5	0.40	0.27	0.31	1.29
21/8	10.4	2.9	0.38	0.25	0.28	1.19

NOTES: 1 K= 2gh/ V^{2}

² Based on Schedule 40 pipe

* Based on Type L copper tubing

4 For screwed valves and fittings, use ferrous K-Factors

5 For OD sizes above 21/8", use welded ferruos K-Factors

VALVES AND FITTINGS EQUIVALENT LENGTHS

TABLE 4. EQUIVALENT LENGTHS OF VALVES AND FITTINGS

SIZE	ANGLE	VALVE	SHORT-RADIUS ELL			LONG-RADIUS ELL			TEE	E, LINE-FI	LOW	TEE, BRANCH-FLOW				
(Inches) IPS	Screwed	Flanged	Screwed	Flanged	Screwed	Flanged	Welded	Screwed	Flanged	Welded	Screwed	Flanged	Welded	Screwed	Flanged	Welder
1/2	29		16		4.1						1.8			4.7		
3/4	31		16		4.7	_		2.5			2.5		-	5.6		_
1	35	57	16	19	5.3	1.6	1.8	2.8	1.5	1.2	3.4	1.0	1.6	6.8	3.8	5.2
11/4	46	69	19	22	7.1	2.2	2.3	3.3	2.0	1.6	4.9	1.3	2.0	9.2	4.9	7.1
11/2	51	76	19	22	7.9	2.6	2.6	3.4	2.2	1.8	5.9	1.4	2.0	9.9	5.8	8.4
2	63	89	20	25	9.0	3.2	3.4	3.6	2.7	2.3	8.1	1.7	2.5	12.6	7.2	10.5
21/2		101	_	28		3.8	4.2		3.0	2.7	_	1.9	2.9		8.4	13
3		123	-	36		4.9	5.3		3.7	3.4		2.4	3.6		11	16
4		155		48		6.2	7.2		4.5	4.5		2.9	4.5	_	14	22
5		190	[63	-	8.1	9.2		5.4	5.7		3.5	5.1	-	17	27
6		227		78		9.5	11		6.1	6.8		4.1	6.1	_	20	33
8	_	295		110		13	15		7.1	9.0		4.7	7.1		27	44
10		370		142		16	18		8.7	11		5.6	8.7	_	32	56
2		465		173		19	22	_	10	14	_	6.2	10		39	68

NON-FERROUS VALVES AND FITTINGS²

LINE	GLOBE VALVE		ANGLE VALVE		SHORT-RA	ADIUS ELL	LONG-RA	DIUS ELL	TEE, LIN	IE-FLOW	TEE, BRANCH-FLO	
(Inches) OD	Screwed	Other 4	Screwed	Other •	Screwad	Other 4	Screwed	Other 4	Screwed	Other 4	Screwed	Other
1/2	40	70	21	24	4.7	4.7		3.2	1.9	1.7	5.1	6.6
5/8	39	72	22	25	5.4	5.7		3.9	2.3	2.3	6.2	8.2
5/8 3/4	39	75	23	25	6.2	6.5	2.9	4.5	2.9	2.9	7.1	9.7
1/8	45	78	23	28	7.0	7.8	3.7	5.3	3.7	3.7	8.2	12
11/8	54	87	25	29	8.1	2.7	4.2	1.9	5.2	2.5	11	8.0
13/8	64	102	27	33	9.9	3.2	4.6	2.2	6.9	2.7	13	10
15/8	75	115	28	34	12	3.8	5.0	2.6	8.7	3.0	14	12
21/8	95	141	30	39	14	5.2	5.4	3.4	12	3.8	19	16
25/8	-	159		44		6.5		4.2		4.6	.,	20
31/8	l	185		53		8.0	_	5.1		5.4		25
35/8		216	-	66		10		6.3	-	6.6		30
41/8		248		76		12		7.3		7.3		35
51/8		292		96	_	14	_	8.8		7.9		42
61/8	-	346		119		17		10		9.3		50

NOTES: ${}^{1}L_{e} = K(D/f)$

Flare, sweat, flanged, etc., and based on Type L copper tubing

² Friction factors (f) determined at "practical" Reynolds Numbers based on 40 F suction lines having pressure-drop of 1.8 psi/100 ft

³ Based on Schedule 40 pipe

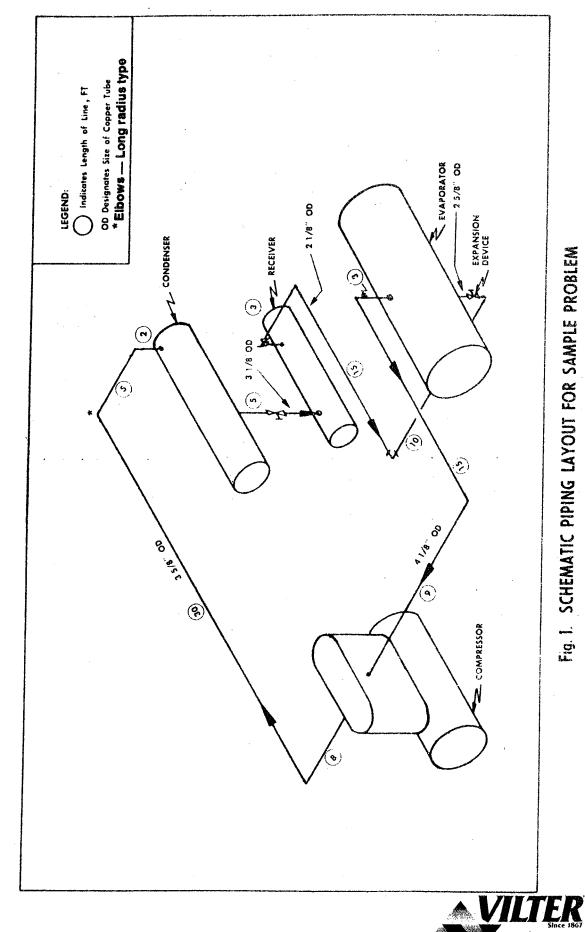
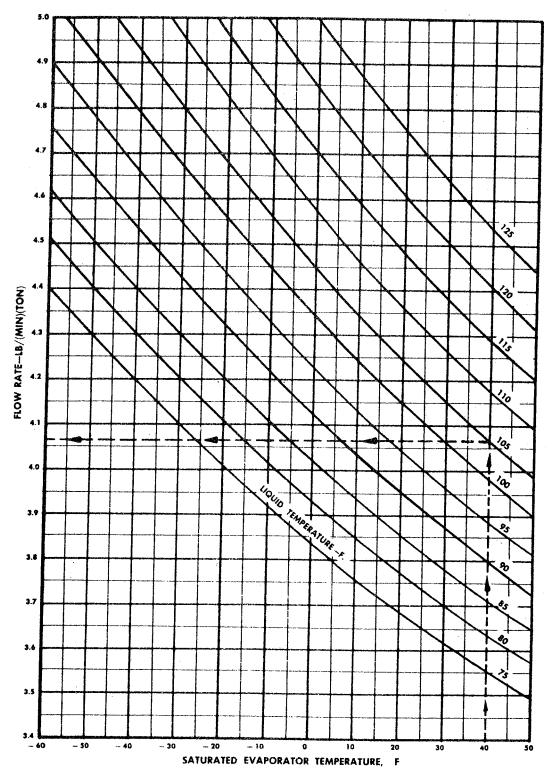
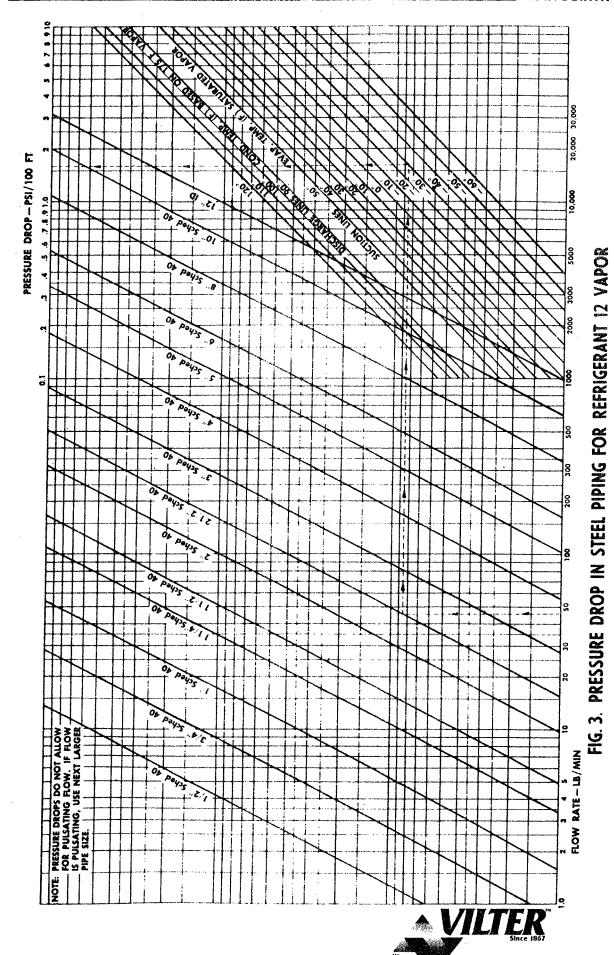
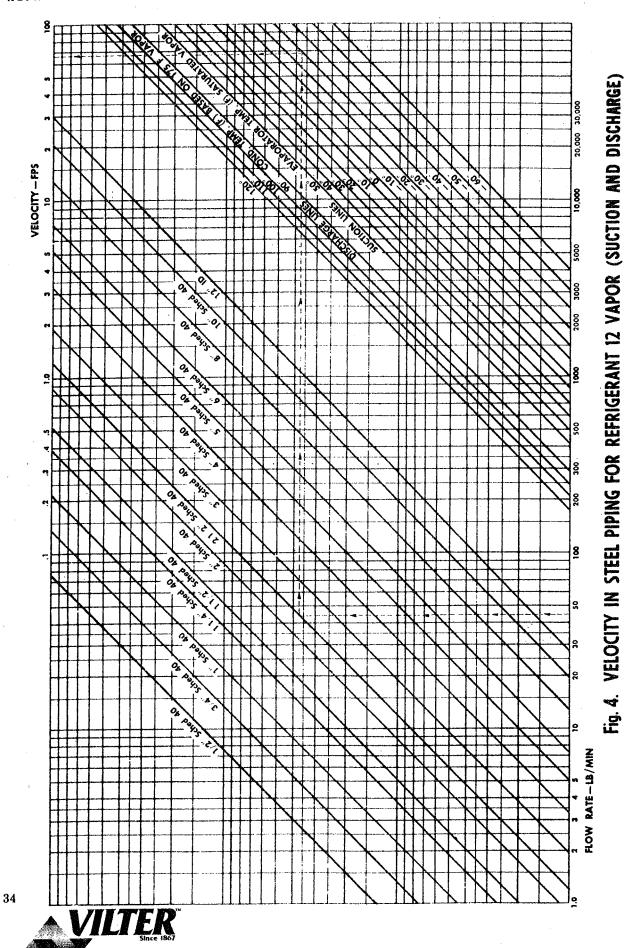
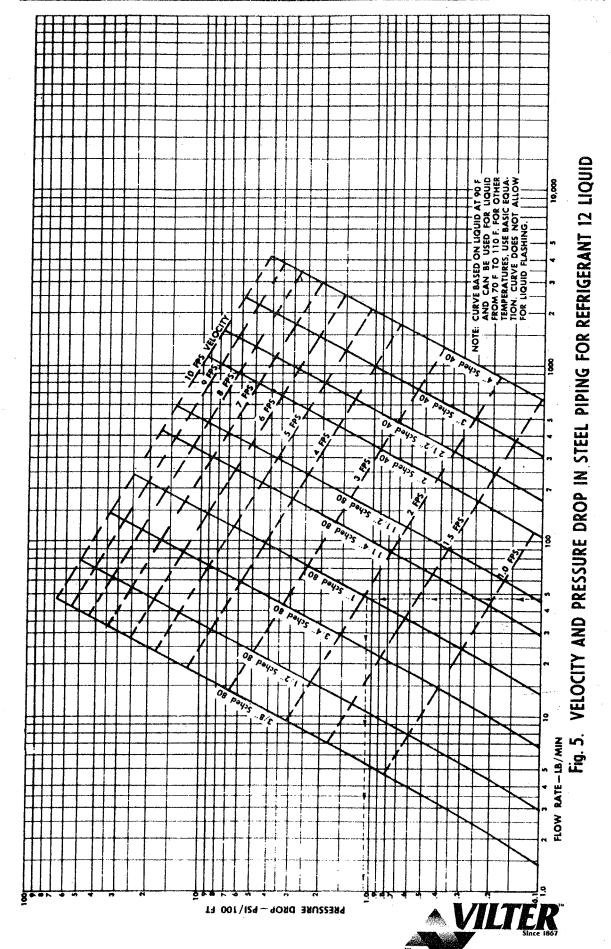
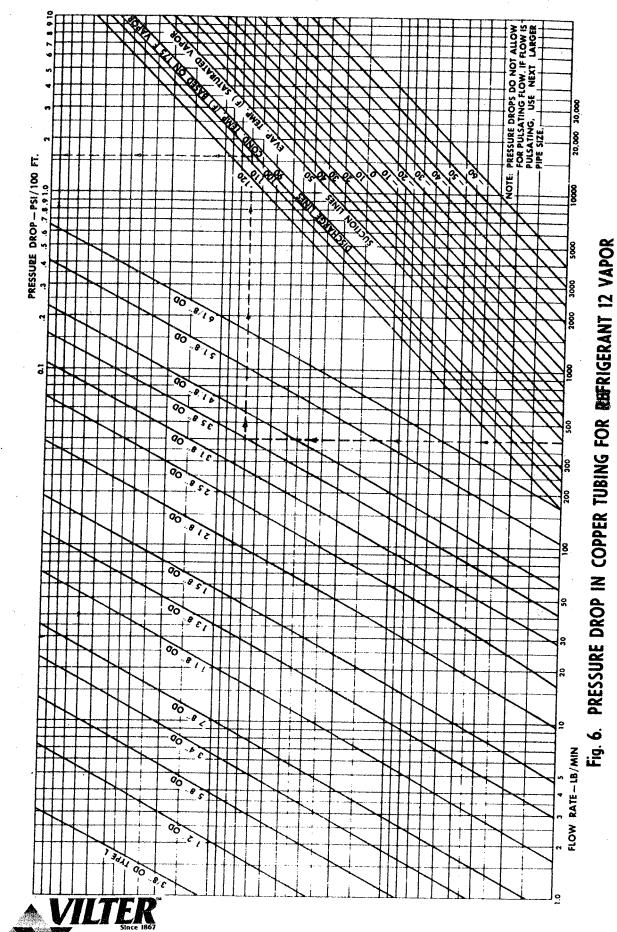


Fig. 1. SCHEMATIC PIPING LAYOUT FOR SAMPLE PROBLEM


Fig. 2. FLOW RATE PER TON OF REFRIGERATION FOR REFRIGERANT 12

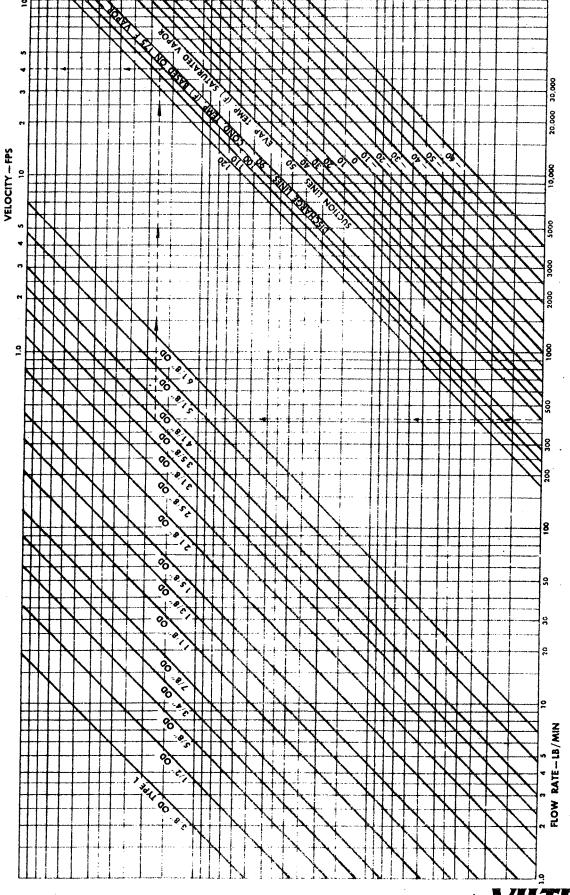
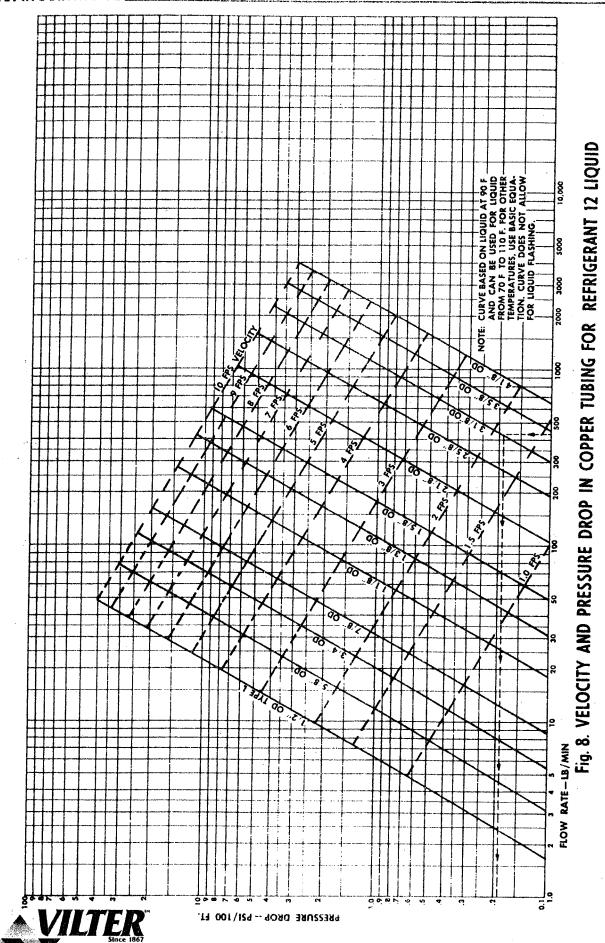



Fig. 7. VELOCITY IN COPPER TUBING FOR REFRIGERANT 12 VAPOR

38

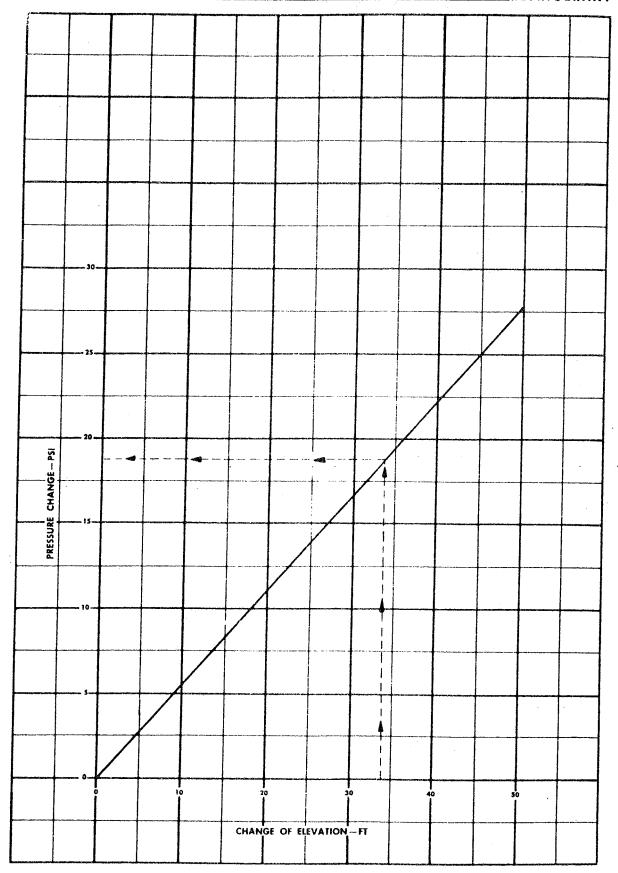


Fig. 9. RELATION OF PRESSURE-CHANGE TO ELEVATION-DIFFERENCE VILTER Since 1867 FOR REFRIGERANT 12 LIQUID

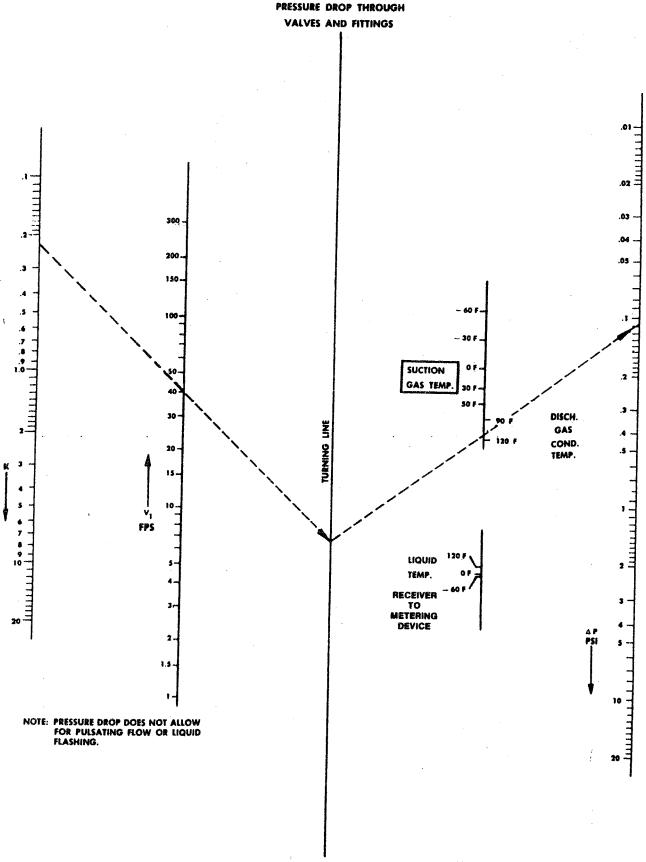
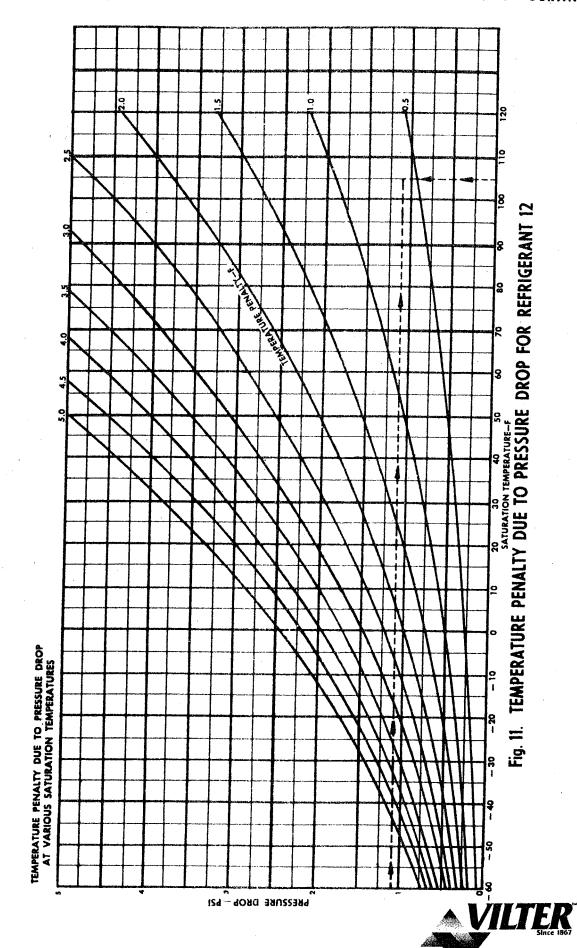



Fig. 10. PRESSURE DROP IN VALVES AND FITTINGS FOR REFRIGERANT 12 VILTER

4]

TABLE 5
THERMODYNAMIC PROPERTIES OF REFRIGERANT 12

Temp		ssure – er Sq. In.		ume . per Lb.		nsity – er Cu. Ft.		Enthalpy tu per Li		Entre Btu per (ppy — Lb.) (°R)	Temp
t	Absolute P	Gage P	Liquid V _f	Vapor Vg	Liquid 1/v _f	Vapor 1/v _g	Liquid h _f	Latent h _{fg}	Vapor	Liquid s	Vapor s _g	t
-85	2.4371		0.010118	13.474	98.830	0.074216	-9.3782	77,289	67.911	-0.023599	0.18267	-85
-80	2.8807			11.533	98.382		-8.3451		68.467	020862	.18143	-80
-75	3.3879		.010211	9.9184	97.930	0.10082	-7.3101		69.023	018156	.18027	-75
-70	3.9651		.010259		97.475	0.11670		75.853	69.580		.17916	-70
-65	4.6193	20.5164*	.010308	7.4347	97.016	0.13451		75.371	70.137	012834	.17812	-65
-60	5.3575	19.0133*	0.010357	6.4774	96.553	0.15438	-4.1919	74.885	70.693	-0.010214	0.17714	-60
-55	6.1874	17.3237*	.010407	5.6656		0.17650	-3.1477		71.249	007622	.17621	-55
−50	7.1168	15.4313*	.010459	4.9742		0.20104	-2.1011			005056	.17533	-50
-45	8.1540	13.3196*	.010511	4.3828	95.141	0.22816	-1.0519		72.359	002516	,17451	-45
-40	9.3076	10.9709*	.010564	3.8750	94.661	0.25806	0.0000	72.913		.000000	.17373	-40
-38	9.8035	9.9611*	0.010586	3.6922	94,469	0.27084	0.4215	72.712	73 134	0.001000	0.17343	-38
-36	10.320	8.909*	.010607	3.5198		0.28411		72.511	73.354	.001995	.17313	-36
-34	10.858	7.814*	.010629	3.3571		0.29788		72.309	73.575	.002988	.17285	-34
-32	11.417	6.675*	.010651	3.2035		0.31216	1.6887			.003976	.17257	-32
-30	11.999	5.490*	.010674	3.0585		0.32696			74.015	.004961	.17229	-30
-28	12.604	4.259*	0.010696	2.9214	93.493	0.34231	2,5358	71.698	74, 234	0.005942	0.17203	-28
-26	13,233	2.979*	.010719	2.7917		0.35820	2.9601		74.454	.006919	.17177	-26
-24	13.886	1.649*	.010741	2.6691		0.37466	3.3848	71.288		.007894	.17151	-24
-22	14.564	0.270*	.010764	2.5529		0.39171			74.891	.008864	.17126	-22
-20	15.267	0.571	.010788	2.4429		0.40934	4.2357		75.110	.009831	,17102	-20
-18	15.996	1,300	0.010811	2.3387	1 1	0.42758	į	1	75.328			
-16	16,753	2.057	.010834	2.2399		0.42738				0.010795	0.17078	-18
-14	17.536	2.840	.010858	2.1461		0.46595			75. 545 75. 762	.011755	.17055	-16 -14
-12	18,348	3,652	.010882	2.0572		0.48611			75.979	.013666	.17032 .17010	-12
-10	19.189	4.493	.010906	1.9727		0.50693	6.3716	69.824		.014617	.16989	-10
-8	20.059	5.363	0.010931	1.8924	1 1	0.52843	6.8003			}		-8
-6	20.960	6.264	.010955	1.8161		0.55063	7.2296	69.397	76.411	0.015564	0.16967 .16947	-ê
-4	21.891	7.195	.010980	1,7436		0.57354	7.6594	69.183		.017449	.16927	-4
-2	22.854	8.158	.011005	1.6745		0.59718			77.057	.018388	16907	-2
0 [23.849	9.153	.011030	1.6089		0.62156		68.750		.019323	.16888	ō
2	24.878	10.182	0.011056	1.5463	1 1	0.64670	•	1	77.485	0.020255	0.16869	2
4	25.939	11.243	.011082	1.4867		0.67263		68.314		.021184	.16851	4
6	27.036	12.340	.011107	1.4299	90.030			68.094		.022110	.16833	6
8		13.471	.011134	1.3758					78,123	.023033	.16815	š
10	29.335	14.639	.011160	1.3241	89.606			67.651		.023954	.16798	10
12	30.539	15.843	0.011187	1.2748	89.392	0.78443	t t	67.428		0.024871	0.16782	12
14		17.084	.011214	1.2278				67.203		.025786	.16765	14
16		18.364	.011241	1.1828				66.977		.026699	.16750	16
18		19.682	.011268	1.1399				66.750 7		.027608	.16734	18
20	35.736	21.040	.011296	1.0988				66.522 7		.028515	.16719	20
22	37.135	22.439	0.011324	1.0596	88.310				ŀ			22
24		23.878	.011352	1.0220	88.091			66.293 7 66.061 7		0.029420	0.16704	24
26		25.360	.011380	0.98612	87.870 1			65.829 8		.030322	.16690 .16676	24 26
28		26.884	.011409	0.95173	87.649 1			65.596 8		.031221	.16662	28
30		28.452	.011438		87.426 1			65.361 8		.033013	.16648	30
32	44.760	30.064	0.011468	0.88725		1	- 1	i	0.624	1		32
34		31.721	.011497	0.85702				64.886 8			0.16635	32 34
36		33.424	.011527	0.82803	86.751 1				1.031	.034796	.16622 .16610	34 36
38		35, 174	.011557	0.80023	86.524 1			54.406 8		.036569	.16598	38
40					00,32411			34.4(In I×				

^{*} Inches of mercury below one atmosphere

TABLE 5 (Continued) THERMODYNAMIC PROPERTIES OF REFRIGERANT 12

Temp		ssure – er Sq. In.		ıme – per Lb.		nsity – er Cu. Ft.		Enthalpy tu per L		Entro Btu per (Temp
t	Absolute		Liquid V _f	Vapor v _g	Liquid 1/v _f	Vapor 1/v _g	Liquid h,	Latent h _{fg}	Vapor h	Liquid s _i	Vapor	t
42	53.513	38.817	0.011619				17.718	63.919		0.038334	0.16574	42
44	55.407	40.711	.011650	.72341	85.836	1.3823	18.164	63.673	81.837	.039213	.16562	44
46	57.352	42.656	.011682	.69982	85.604	1.4289	18.611	63.426		.040091	.16551	46
48	59.347	44.651	.011714	.67715	85.371	1.4768	19.059	63.177	82.236	.040966	.16540	48
50	61.394	46.698	.011746	.65537	85,136	1.5258	19.507	62.926	82.433	.041839	.16530	50
52	63.494	48.798	0.011779			1.5762	19.957	62.673	82.630	0.042711	0.16519	52
54	65.646	50.950	.011811	.61431	84.663		20.408	62.418	82.826	.043581	.16509	54
56	67.853	53.157	.011845	.59495		1.6808	20.859	62.162	83.021	.044449	.16499	56
5 8	70.115	55.419	.011879	.57632		1.7352	21.312	61.903	83.215	.045316	.16489	58
60	72.433	57.737	.011913	.55839	83.944	1.7909	21.766	61.643	83.409	.046180	.16479	60
62	74.807	60.111	0.011947	0.54112		1.8480	22.221	61.380	83.601	0.047044	0.16470	62
64	77.239	62.543	.011982	.52450		1.9066	22.676	61.116	83.792	.047905	.16460	64
66	79.729	65.033	.012017	.50848		1.9666	23.133	60.849	83.982	.048765	.16451	66
68	82.279	67.583	.012053	.49305			23.591	60.580		.049624	.16442	68
70	84.888	70.192	.012089	.47818	82.717	2.0913	24.050	60.309	84.359	.050482	.16434	70
72	87.559	72.863	0.012126	0.46383	82.467	2.1559	24.511	60.035	84.546	0.051338	0.16425	72
74	90.292	75.596	.012163	.45000		2.2222	24.973	59.759	84.732	.052193	.16417	74
76	93.087	78.391	.012201	.43666	81.962	2.2901	25.435	59.481	84.916	.053047	.16408	76
78	95.946	81.250	.012239		81.707	2.3597	25.899		85.100	.053900	.16400	78
80	98.870	84.174	.012277	.41135	81.450	2.4310	26.365	58.917	85.282	.054751	.16392	80
82	101.86	87.16	0.012316	0.39935	81.192	2.5041	26.832	58.631	85.463	0.055602	0.16384	82
84	104.92	90.22	.012356		80.932	2.5789	27.300	58.343	85.643	.056452	.16376	84
86	108.04	93.34	.012396	.37657		2.6556	27.769	58.052	85.821	.057301	.16368	86
88	111.23	96.53	.012437	.36575		2.7341	28.241	57.757	85.998	.058149	.16360	88
90	114.49	99.79	.012478	.35529	80.142	2.8146	28.713	57.461	86.174	.058997	.16353	90
92	117.82	103.12	0.012520		79.874	2.8970	29.187	57.161	86.348	0.059844	0.16345	92
. 94	121.22	106.52	.012562			2.9815	29.663	56.858	86.521	.060690	.16338	94
96	124.70	110.00	.012605			3.0680	30.140		86.691	.061536	.16330	. 96
98	128.24	113.54	.012649		79.061	3.1566	30.619		86.861	.062381	.16323	98
100	131.86	117.16	.012693	.30794	78.785	3.2474	31.100	55.929	87.029	.063227	.16315	100
102	135.56	120.86	0 012738	0.29937	78.508		31.583		87.196	0.064072	0.16308	102
104	139.33	124.63	.012783			3.4357	32.067		87.360	.064916	.16301	104
106	143.18	128.48	.012829			3.5333	32.553		87.523	.065761	.16293	106
108	147.11	132.41	.012876			3.6332	33.041	54.643		.066606	.16286	108
110	151.11	136.41	.012924			3.7357	33.531	i i	87.844	.067451	.16279	110
112	155.19	140.49	0.012972			3.8406	34.023	53.978	88.001	0.068296	0.16271	112
114	159.36	144.66	.013022			3.9482	34,517		88.156	.069141	.16264	114
116	163.61	148.91	.013072			4.0584	35.014		88.310	.069987	.16256	116
118	167.94	153.24	.013123			4.1713	35.512		88.461	.070833	.16249	118
120	172.35	157.65	.013174	1	f	4.2870	36.013	52.597		.071680	.16241	120
122	176.85	162.15	0.013227			4.4056	36.516		88.757	0.072528	0.16234	122
124	181.43	166.73	.013280			4.5272	37.021		88.902	.073376	.16226	124
126	186.10 190.86	171.40	.013335			4.6518			89.044	.074225	.16218	126
128 130	190.86	176.16 181.01	.013390			4.7796 4.9107	38.040 38.553		89.184 89.321	.075075	.16210 .16202	128 130
1			1			ı				l l		
132 134	200.64	185.94 190.97	0.013504			5.0451 5.1829			89.456 89.588		0.16194	132 134
136	210.79	196.09	.013623			5.3244	39.588 40.110	49.608		.077633	.16185 .16177	136
138	216.01	201.31	.013684			5.4695	40.110	49.008		.079346	.16168	138
140	221.32	206.62	.013746	.17799				48.805		.080205	.16159	140
140	221.32	200.02	.013/40	.1//99	14.140	2.0104	71.102	40.003	02.201	.UBUZU3	.10123	140

TABLE 6 REFRIGERANT 12 FLOW RATE POUNDS/MINUTE/TON REFRIGERATION

Temp.	Corres.		Booster I)ischarge	Temper	ture (°F)	Co	ndensing	Dischar	rge Temp	erature	(°F)
of	Suction	10	20	30	40	50	60	70	80	90	100	110	120
Suction (°F)	Pressure (Psig)	Co 14.64	rrespondi 21,04	ing Disch	arge Pre 36.97	ssure (P:	,				harge Pre		
Company of the same		17.07	21.04	20,43	30.97	40.70	57.74	70.19	84.17	99.79	117:2	136.4	157.7
60	19.01*	3.46	3.60	3.75	3.91	4.09	4.29	4.29	4.51		T		
-50	15.43*	3.39	3.52	3.67	3.82	4.00	4.19	4.19	4.40	4.64		i	[
-40	10.97*	3.33	3.46	3.60	3.74	3.91	4.08	4.08	4.29	4.52	4.78	1	l
-30	5.49*	3.27	3.39	3.52	3.67	3.82	4.00	4.00	4.20	4.41	4.66	4.94	l
-20	0.57	3.21	3.33	3.46	3.60	3.75	3.92	3.92	4.10	4.31	4.54	4.81	5.12
-10	4.49	3.16	3.27	3.39	3.52	3.67	3.84	3.84	4.01	4.21	4,44	4.69	4.98
0	9.15	3.10	3.21	3.34	3.46	3,60	3.76	3,76	3,93	4.12	4.33	4.57	4.85
10	14.64		3, 16	3.28	3.40	3.53	3.68	3.68	3.85	4.03	4,23	4.46	4.72
20	21.04			3.22	3.34	3.47	3.62	3.62	3.77	3,94	4.14	4.36	4.61
30	28.45				3.29	3.41	3.55	3.55	3.70	3.87	4.05	4.26	4,50
40	36,97	ļ				3.41	3,48	3.48	3.63	3.80	3.98	4.18	4.41
50	46.70			J			3.43	3,43	3.57	3.72	3.90	4.09	4.31
60	57.74	I	1	i	- 1			3.37	3.51	3.66	3.82	4.01	4.22

^{*}Inches mercury below one atmosphere.

TABLE 7 REFRIGERANT 12 FLOW RATE CUBIC FEET/MINUTE/TON REFRIGERATION

Т	Corres.] 1	Booster I	Discharge	Tempera	ture (° F)	C₀	ndensins	Dischar	ge Temp	erature (°F)
Temp, of	Suction	10	20	30	40	50	.60	70	80	90	100	110	120
Suction (°F)	Pressure (Psig)			ng Disch						ng Disch	arge Pre	ssure (P	sig)
· - / ,	(14.64	21.04	28.45	36.97	46,70	57.74	70.19	84.17	99.79	117.2	136.4	157.7
-60	19.01*	22.4	23.3	24.3	25.3	26.5	27.8	27.8	29.2				
50	15,43*	16.9	17.5	18.3	19.0	19.9	20.9	20,9	21.9	23.1	İ		
-40	10.97*	12.9	13.4	14.0	14.5	15.2	15.8	15.8	16.6	17.5	18.5		
-30	5.49*	10.0	10.4	10.8	11.2	11.7	12.2	12.2	12.8	13.5	14.3	15.1	l
-20	0.57	7.85	8. 15	8.46	8.80	9.17	9.58	9.58	10.0	10.5	11.1	11.8	12.5
-10	4.49	6.24	6.45	6.69	6.95	7.25	7.58	7.58	7.91	8.31	8.76	9.25	9.83
0	9.15	4.98	5, 16	5.37	5.57	5.79	6.05	6.05	6.32	6.63	6, 97	7.36	7.80
10	14.64		4.19	4.35	4.51	4.68	4.88	4.88	5.10	5.35	5.61	5.91	6.26
20	21.04		}	3.54	3,67	3.81	3.98	3.98	4.14	4.33	4.55	4.79	5.00
30	28.45		1		3.02	3.14	3,26	3.26	3.40	3.56	3.72	3.92	4.14
40	36.97			1		2.64	2.70	2.70	2.81	2.94	3.08	3.24	3.41
50	46,70	i	- 1	- 1	·]		2.25	2.25	2.34	2.44	2,56	2.68	2.82
60	57.74	ĺ		ļ	İ	!		1.88	1.96	2.04	2.13	2,24	2.36

^{*}Inches mercury below one atmosphere.

Figures to left of heavy line are based on booster flow-rate of two-stage system with liquid subcooling to within 10°F of intermediate. Figures to right of heavy line are based on single stage.

REFRIGERANT 22 PIPING DATA

This section presents useful data for the proper sizing of Refrigerant 22 (Monochlorodifluoromethane) piping. Its purpose is not to set design standards, but to provide the latest pipe-sizing information available. It also discusses various factors which determine the allowable pressure drops in different portions of a refrigerant piping system.

Basis of Charts and Tables

The pressure-drop charts given herein for single or high stage applications are based on calculations using the commonly accepted Darcy-Weisbach pressure-drop formula and Darcy friction factors from the Moody Chart (see appendix, Sections A-III and A-IV). Capacity tables for intermediate or low stage applications are based on calculations using Fanning's equation for friction loss.

Pipe Lines. Suction line velocity and pressuredrop values are for saturated vapor temperature conditions, and the discharge line values are at pressures corresponding to the condensing temperatures indicated, and superheated to 200 F.

Liquid line velocities and pressure drops are for saturated Refrigerant 22 liquid at 90 F and can be used with reasonable accuracy for temperatures between 70 F and 110 F.

Valves and Fittings. Pressure losses through refrigerant valves and fittings are given in a table, in the form of "K" factors (velocity heads). These "K" factors are representative, using average values obtained from various tests and manufacturers' ratings. "K" factors vary widely for a given type and size of valve or fitting, depending on the construction or internal design.

For a simplified determination of these pressure drops, "equivalent lengths" of valves and fittings are given in a table. These "equivalent lengths" have been derived, using the "K" factors in conjunction with friction factors taken from the Moody Chart at Reynolds Numbers in the range of normal usage, for both vapor and liquid lines.

"Equivalent lengths" result in a sacrifice of accuracy, depending on the temperature, state and velocity of the refrigerant. "K" factors give more reliable pressure drop data. For greater accuracy, particularly for valves, "K" factors should be obtained from the manufacturer.

Pressure-Drop Limitations (Pipe-Sizing Factors)

Vapor line pressure drops result in an increase in power input to the compressor and a decrease in refrigeration capacity. The most critical line with respect to this is the suction line, as losses in it have the greatest effect on the system. An economic study, involving power input, system capacity, size of system components—evaporator and condenser—and installation cost of pipe and

pipe insulation, can best determine the optimum pressure-drop allowance. Experience has shown that the allowable pressure drop for suction lines should decrease with suction temperature. Discharge lines may have a greater pressure drop, for a specified temperature penalty, than suction lines.

Suction line pressure drop increases the volume of gas to be handled by the compressor, increases the ratio of discharge pressure to suction pressure, and reduces the volumetric efficiency of the compressor. This results in less capacity from a given compressor and more power per ton of refrigeration.

The effect of a particular amount of suction line pressure drop is greater as the suction pressure decreases. Fig. 11 indicates this in showing that a particular pressure drop results in a greater "temperature penalty" at a lower saturation temperature. The result of suction line pressure drop is that the compressor operates from a suction condition corresponding to the actual evaporator temperature minus the temperature penalty.

Larger suction line sizes reduce the pressure drop and, therefore, reduce the compressor capacity required and also the power per ton. However, the larger pipe size increases its cost and also its installation and insulation cost. The best size from an economic consideration can be determined by an economic study with the cost of the various factors available.

Discharge line pressure drop also increases the ratio of discharge pressure to suction pressure and reduces the volumetric efficiency of the compressor. This results in less capacity from a given compressor and more power per ton of refrigeration.

The effect of a particular amount of discharge line pressure drop is less as the discharge saturation temperature increases, but the difference is not very great in the range of saturation temperatures corresponding to usual discharge pressures. Fig. 11 indicates this by showing the relatively small change in "temperature penalty" for a particular pressure drop at the temperatures corresponding to saturation at normal discharge pressures. Fig. 11 also indicates the smaller "temperature penalty" for a given pressure drop in the saturation temperature range corresponding to usual discharge conditions as compared to the range corresponding to usual suction conditions. Because of this, economic considerations usually result in the use of a larger pressure drop as the basis of design for a discharge line than that which would be used for a suction line.

Liquid line pressure drop results in no direct penalty in capacity or power. It is important that the pressure loss not be such as to produce flash gas. If the pressure loss or liquid lift are such as to result in flash gas, the required capacities of liquid solenoid valves and expansion valves must be increased. Liquid lines cooler than ambient will take in heat and may sweat.

Higher liquid line velocities should be used with caution because of possible stresses due to rapid closing of any liquid valve. Solenoid valves or solenoid pilot-controlled valves, almost always are rapid-closing.

When the liquid is to flow upward in a riser, or when pressure drop may cause flashing, subcooling can be employed to eliminate flash gas in the supply to the expansion valves. Subcooling may make insulation for the liquid line desirable or necessary.

Basis of Design

Suction lines should generally be selected for a pressure drop of 1 to 3 psi per 100 feet of pipe for temperatures above 20 F. On the other hand, pressure drop should range from 2 to 0.2 psi per 100 feet of pipe at temperatures between + 20 F and — 60 F. In other words, pressure-drop allowance should decrease with decreasing suction temperatures.

Discharge lines should generally be selected for a nominal pressure-drop between 2 and 5 psi per 100 feet of pipe at any normal condensing temperature.

Liquid lines are normally sized for a low pressure drop to avoid flash gas. The design conditions most generally accepted are:

- a. Condenser to receiver: Velocities from about 75 fpm in smaller sizes to 150 fpm in larger sizes are commonly used. Higher velocities may be used where the line is short and direct, or other conditions permit.
- b. Receiver to system: Velocity range of 100 to 300 fpm, with pressure drop of 2 psi/100 ft or greater.
- c. The liquid line between the expansion valve and the evaporator is often very short and may then be the same size as the expansion valve outlet or the evaporator inlet. However, unless it is very short, consideration should be given to the size of this line which will be carrying both gas and liquid. Common practice for relatively short lines, containing a service valve, is to make them one size larger than the liquid line.

How to Use Charts

1. Tables 1-A and 1-B permit quick selection of suction lines applicable to the conditions listed.

Table 1-A gives suction line capacities (tons) for intermediate or low stage applications. The values in this table are based on 0°F, saturated discharge temperature. For intermediate or low stage suction line capacities at other saturated discharge temperatures, multiply table value by proper line capacity multiplier as given in Table A-7 in appendix.

Table 1-B gives suction line capacities (tons) for single or high stage applications at various suction temperatures, pressure drops, and at 105°F. saturated condensing temperature. Interpolation may be used between suction temperatures to determine line capacity at a fixed pressure drop. (Do not interpolate between pressure-drop columns.) For other condensing temperatures and other pressure-drop limitations, follow the steps outlined below for detailed sizing of lines.

Table 2 can be used to determine the capacities
of discharge and liquid lines at a specified
pressure drop or velocity, as listed. For temperatures other than 105 F condensing and
40 F suction, these capacities are only approximate.

The following steps are used for detailed sizing of Refrigerant 22 piping.

- 3. Determine the flow rate, lb/(min) (ton), from Fig. 2: Use saturated evaporator temperature and liquid temperature, disregarding any suction superheating. Total flow equals lb/(min) (ton) times system tonnage.
- 4. Enter Fig. 3 or Fig. 6, depending on whether the lines are steel or copper, and determine the pressure drop, psi per 100 ft, for the total flow. (Figs. 3 and 6 are used for suction and discharge lines.) The pressure drop through any size line is found by projecting vertically, from the flow rate on the lower scale, to the intersection with the line size to be used. At this intersection, follow the horizontal line to the right and intersect with the vapor temperature line, and then project upward to the top scale to read the pressure drop. Prorate the pressure drop according to the actual length, using either the net length of straight pipe or the straight pipe plus the equivalent length of valves and fittings. If net length of straight pipe is used, determine the pressure drop for valves and fittings from Fig. 10, using appropriate "K" factors from Table 3 and the vapor line velocity. (See Step 5.)
- 5. Using the total refrigerant flow, lb per min, determine the velocity for suction and discharge lines in Fig. 4 or Fig. 7, depending on

whether the lines are steel or copper. These charts are read in the same manner as Fig. 3 and Fig. 6.

6. For liquid lines, determine the pressure drop and velocity, using either Fig. 5 or Fig. 8, depending on the type of pipe used. The liquid-flow rate in lb per min, as read on the lower scale, is projected upward to the intersection of a given pipe size. The velocity in ft per sec can be read at this point and a pressure drop in psi per 100 ft equivalent length can be read on the ordinate scale. (The total flow for liquid lines is the same as that in the vapor lines as found in Step 3.) Prorate the pressure drop, using the ratio of actual pipe length versus 100 ft.

Valves and fittings in liquid lines are treated in the same manner as outlined in Step 4 for vapor lines.

- 7. Fig. 9 is used to determine the pressure drop (or gain) in a liquid line when there is an appreciable change in elevation between the condenser or receiver and the evaporator.
- 8. Fig. 11 is used to determine the temperature penalty for the various refrigerant lines, using the pressure drops determined in the steps above.

Pulsating Flow

Pulsating flow in refrigerant lines causes increased pressure losses beyond those indicated by Fig. 3 and Fig. 6, which are based on steady flow.

Reciprocating compressors create pulsating flow in both discharge and suction lines. However, because gas density and the pressure-pulsation amplitude are both greater in the discharge line, the added frictional loss due to pulsation is also greater in the discharge line. For the same reasons, the additional pressure loss due to pulsating flow is greater for a single-cylinder compressor than for a multi-cylinder compressor. Pulsation is greater as the compression ratio increases.

The refrigerant piping and other components in the system, such as valves, fittings, condenser, evaporator, etc., attenuate the pulsation, resulting in an energy loss that is only slightly above the frictional loss that occurs when the flow is steady. Use of a muffler in the discharge line, close to the compressor, reduces the friction loss in the line downstream from the muffler. Of course, the frictional loss of the muffler itself must be considered in the system design.

SAMPLE PROBLEM

GIVEN

100 tons refrigeration
10 F evap. temperature
100 F condensing (liquid) temperature
Piping layout as shown in Fig. 1
Select discharge, liquid and suction
line sizes
Determine compressor operating
conditions

Note: For the purpose of illustration, copper tubing will be assumed throughout. However, for economic or other reasons, good practice might employ all copper, all steel, or some copper and some steel, piping

SOLUTION

From Fig. 2, the lb/(min) (ton) at 10 F evaporator temperature and 100 F condensing temperature = 3.08 Refrigerant circulation = 100 tons × 3.08 lb/(min) (ton) = 308 lb/min

DISCHARGE LINE

Table 2 indicates $3\frac{1}{8}$ " OD copper tube is adequate for 104 tons refrigeration at 2 psi/100 ft.

Pressure Drop in Pipe:

From Fig. 6, pressure drop at 308 lb/min and 100 F condensing temperature through $3\frac{1}{8}$ " OD = 1.8 psi/100 ft.

Pressure drop for 45 ft. of pipe $= 45/100 \times 1.8$ = 0.81 psi

Pressure Drop in Fittings:

From Fig. 7, velocity at 308 lb/min and 100 F condensing temperature through 31/8" OD copper tube == 36 fps
From Table 3, for 31/8" OD long

From Table 3, for $3\frac{1}{8}$ " OD long radius ells (sweat fittings) K = 0.23

From Fig. 10. for velocity = 36 fps and K = 0.23, pressure drop per ell = 0.09 psi 3 ells \times 0.09 psi

Total pressure drop

 $= \frac{0.27 \text{ psi}}{1.08 \text{ psi}}$

Temperature Penalty:

From Fig. 11, 1.08 psi, 100 F saturated temperature, temperature penalty

 $= 0.40 \, \text{F}$

LIQUID LINES

Condenser to Receiver

Select 3%" OD liquid line from Table 2 for velocity of approximately 100 fpm.

Because of gravity flow, no pressure drop need be calculated.

Receiver to Expansion Valve:

Using Table 2, select 2 1/8" O.D. pipe size or, from Fig. 8, select 2 1/8" O.D. pipe size for 308 lb/min liquid, result-

ing in about 0.8 psi actual pressure drop per 100 ft. velocity = 3.2 fps = 192 fpm.

Pressure Drop in Pipe:

Pressure drop for 28 ft. of pipe = 28/100 x 0.8 psi/100 ft.

= 0.22 psi

Pressure Drop in Valves and Fittings:

From Fig. 8, 308 lb/min copper tube velocity = 3.2 fps. From Table 3, K = 0.38 for one S.R. sweat ell. Using Fig. 10 with K = 0.38 and 3.2 fps and 100°F. liquid temperature, the pressure drop (per sweat ell) is .03 psi = 0.09 psiPressure drop for one 2 1/8" flanged

angle valve using K = 2.9 from Table 3 and 3.2 fps from Fig. 8, then using

= 0.24 psiTotal Liquid Lines Pressure Drop = 0.55 psi

Expansion Valve to Evaporator:

One size larger than 21/8", or 25%".

SUCTION LINE

From Table 1-B, select 4%" OD copper tube, which by interpolation is adequate for 113.8 tons of refrigeration with a pressure drop of 2 psi/100 ft.

Pressure Drop in Pipe:

From Fig. 6, pressure drop at 10 F suction temperature and 308 lb/min for $4\frac{1}{8}$ " OD = 1.6 psi/100 ft. Pressure drop for 27 ft. of pipe $= 27/100 \times 1.6.$

Pressure Drop in Fittings:

From Fig. 7, velocity at 10 F suction temperature and 308 lb/min for 41/4"

OD = 70 fps

Pressure drop for two 41/8" OD long

radius ells (sweat fitting)

From Table 3, K = 0.22

From Fig. 10, pressure drop per ell = 0.10 psi. Pressure drop for 2 ells

 $=2 \times 0.10$

= 0.20 psi =0.63 psi

= 0.43 psi

Total pressure drop Temperature Penalty:

From Fig. 11, 0.63 psi, 10 F saturated temperature, temperature penaltv

= 0.7 F

COMPRESSOR SELECTION

Therefore, a compressor must be selected for 100 tons capacity at 10 - 0.7 = 9.3 F suction temperature and 100 + 0.4 = 100.4 F condensing temperature.

TABLE 1-A. SUCTION LINE CAPACITIES—TONS

(For Intermediate or Low Stage Applications)

Refrigeront and AT	Line Size			Suc	tion Line	•			
Equivalent of Friction Drop*	Type L			Suc	ction Ten	ıp F			Second Stage Discharge and Liquid Lines
Thenon Drop	Copper OD	-90	-80	-70	-60	-50	-40	-30	and Elquid Emes
Refrigerant 22	1/2 5/8 7/8 1/9 13/8 15/8	0.16 0.34 0.59 0.93	0.23 0.48 0.81 1.34	0.31 0.65 1.12 1.8	0.91	1.19	1.55		
2 F AT Per 100 ft Equiv. Length	21/8 25/8 31/8 35/8 41/8 51/8	21.2	2.8 5.0 8.0 12.0 17.2 30.6 50.0	3.7 6.6 10.6 16.0 22.9 41.0 66.5	5.2 9.4 15.0 22.6 32.3 57.5 94.0	6.8 12.3 19.6 29.5 42.3 75.0 123.0		11.1 20.0 32.0 48.0 68.8 122.0 200.0	See Table 2

(1) Values based on 0 F saturated discharge temp. For capacities at other saturated discharge temp, multiply table value by proper line capacity multiplier (See appendix, Table A-7).

(2) For other ΔT 's and Equivalent Lengths, L_{\bullet}

Line Capacity (Tons)

= Table Tons $\times \left(\frac{100}{L_{\bullet}} \times \frac{\text{Actual } \Delta T \text{ Loss Desired}}{\text{Table } \Delta T \text{ Loss}}\right)^{0.45}$

(3) For other Tons and Equivalent Lengths in a given pipe size,

$$\Delta T = \text{Table } \Delta T \times \frac{L_e}{100} \times \left(\frac{\text{Actual Tons}}{\text{Table Tons}}\right)^{1.8}$$

(4) For pressure drop (psi) corresponding to ΔT , refer to Refrigerant properties, Table 5.

(5) Size low stage (Booster) discharge lines same as equivalent single stage suction lines (see Table 1-B).

SUCTION PIPING

TABLE 1-B. SUCTION LINE CAPACITIES—TONS¹

(For Single or High Stage Applications)

					Saturat	ed Suction Tem	perature—l	F	
S	INE IZE ches)		-40		20	0		20	40
Ì	•	-	destació de distribuir a consection de sur la distribuir de sur la distribuir de sur la distribuir de sur la d		Pres	sure Drop—Psi	Per 100 ft		
IPS	OD	1/2 1	2 3	1/2 1	2 3	1/2 1 2	3 1/2	1 2 3	1 2 3
₩	½ %	-0.3		— 0.36	0.490.61		0.780.400	.560.800.96	
3/4	<i>7</i> ₈	0.390.5	60.790.98	0.510.73	1.03 1.26	0.650.931.31	1.620.811	.16 1.64 2.02	1.131.642.352.93 0.991.422.032.58 2.2813.2814.8015.83
1	11/4	0.74 1.0	5 1.50 1.81	0.98 1.38	1.95 2.42	1.25 1.78 2.51	3.12 1.56 2	.25 3.18 3.92	2.28 3.28 4.80 5.83 1.96 2.72 4.04 4.90 4.04 5.69 8.35 10.3
11/4	1%	[2.30]3.3	84.765.91	2.964.35	6.23 7.77 	3.93 5.60 8.10 9	9.964.957	. 17 10 . 8 12 . 9	4.04 5.69 8.05 9.94 6.23 8.94 13.1 16.2 6.03 8.47 12.0 14.9
2	21/8	4.79 6.	9 10.1 12.4	6.24 9.05	13.2 16.3	8.11/11.7/17.0/2	21.5 10.3 14	4.922.227.0	13.1 19.0 27.1 34.4 11.5 16.4 23.2 28.5
21/2	25/8 31/8	7.15 10.	1 14.1 17.3	9.1 12.9	18.6 23.0	11.7 16.5 24.0 2	29.314.720	0.9 29.4 38.0	22.8 32.8 47.0 59.0 18.2 26.2 37.7 46.3 35.7 52.9 76.2 94.4
3	35%	12.4 17.	9 25.4 31.8	16.123.4	34.2 40.4	21.0 29.6 42.0 5	52.3 26.1 38	3.0 53.0 64.3	32.5 45.7 65.6 81.2 54.6 78.2 114 139
4	41/a 51/a	25.636.	450.563.5	32.0 47.1 6	5.981.74	17.7 68.5 99.5 12.7 59.1 84.5 19.3 124 180	107 53.7 75	5.5 105 129	77.2 112 161 199 64.7 91.7 132 162 135 199 286 357
5	61/4	46.465. 79.6 11	7 92 114	59.385.0 105 151	121 149 7	7.4 109 154	189 96.5 1	33 191 234	118 167 234 291 218 314 457 573
6 8 10 12		75.0 10: 156 22: 274 396 442 600	317 392 5 533 678	206 291 365 519	719 890	262 373 530 458 670 920 1	656 331 4 120 570 8	170 660 820 117 1140 1400	192 270 397 477 407 579 827 1010 718 1020 1420 1740 1130 1600 2280 2810

NOTES: 1 Based on fluid flow at 105 F saturated condensing temperature
2 "IPS" data based on Schedule 40 piping "OD" data based on Type L copper tubing

DISCHARGE AND LIQUID PIPING

TABLE 2. DISCHARGE AND LIQUID LINE CAPACITIES-TONS 1

			DISCHA	ARGE LINES		riguii	D LINES
SI	INE ZE ² ches)		Temper	ature 200 F		To Receiver	To System
\	,		Press Psi	ure Drop, /100 ft	A Carlo (Carro pp) propose and difference and a special processing and	Velocity fpm	Pressure Drop Psi/100 ft
IPS	OD	1/2	1	2	3	100	2
1/2	1/2 5/8	0.33 0.59 0.71	0.48 0.88 1.00	0.69 1.27 1.40	0.86 1.63 1.71	2.34 3.78 3.81	2.89 5.48 4.65
	3/4	1.05	1.53	2.22	2.74	5.55	9.20
3/4	<i>1</i> /8	1.64 1.50	2.36 2.09	3.42 3.00	4.32 3.82	7.85 7.05	14.3 10.3
1	11/8	3.29 2.82	4.71 4.09	6.91 5.75	8.64 6.98	13.4 11.7	29.2 20.2
	13/8	5.71	8.37	12.1	15.1	20.4	51.5
11/4	15/8	5.75 8.97	8.21 13.1	· 11.6.	13.8 23.6	20.9 28.9	44.1 83.0
11/2	21/8	8.64 19.3 16.6	12.4 27.2 23.6	17.2 40.5 33.1	21.6 49.8 41.9	28.8 50.4 54.6	66.4 168 159
	25/8	32.9	48.2	68.8	87.0	77.6	296
2½ 3	31/8	26.6 53.2 47.2	39.2 77.1 66.4	53.2	65.8 136	77.9 111	248 475
3	35/8	79.0	115	93.7 165	116 203	120 150	459 7 4 2
4	41/8	111 95.0	163 133	232 189	291 232	194 207	984 911
5	51/8	199 171	292 239	419 346	522 425	303 325	311
	61/8	316	459	658	823	434	
6 8 10 12		281 588 1020 1640	409 844 1430 2320	572 1180 2040 3300	681 1440 2490 4080	471 815 1280 1840	

NOTES: 1 Based on fluid flow at 105 F saturated condensing temperature and 40 F saturated evaporating temperature 2 "IPS" data based on Schedule 40 steel piping except that liquid lines 1½" and smaller are Schedule 80 "OD" data based on Type L copper tubing

VALVES AND FITTINGS K-FACTORS

TABLE 3. "K-FACTORS" (VELOCITY HEADS) ' FOR VALVES AND FITTINGS

	FERROUS VALVES AND FITTINGS ²															
LINE	GLOBE	VALVE	ANGLE	VALVE	SHOF	RT-RADIUS	S ELL	LON	G-RADIUS	ELL	TE	E, LINE-FL	.OW	TEE,	BRANCH-	FLOW
(Inches) IPS	Screwed	Flanged	Screwed	Flanged	Screwed	Flanged	Welded	Screwed	Flanged	Welded	Screwed	Flanged	Welded	Screwed	Flanged	Welded
1½ 3¼ 1	15 11 9.3	 15.5	8.4 5.7 4.3	5.0	2.1 1.7 1.4	0.43	0.46	0.9 0.73	0.40	0.32,	0.9 0.9 0.9	 0.26	0.43	2.4 2.0 1.8	1.0	1.37
1¼ 1½ 2 2½	8.4 7.8 7.0	12.8 11.5 9.9 9.0	3.5 2.9 2.2	4.0 3.4 2.8 2.5	1.3 1.2 1.0	0.40 0.39 0.36 0.34	0.42 0.40 0.38 0.37	0.60 0.52 0.40	0.37 0.34 0.30 0.27	0.29 0.27 0.25 0.24	0.9 0.9 0.9	0.24 0.22 0.19 0.17	0.36 0.31 0.28 0.26	1.7 1.5 1.4	0.90 0.88 0.80 0.75	1.31 1.27 1.17 1.13
3 4 5 6		8.3 7.5 7.0 6.7		2.4 2.3 2.3 2.3		0.33 0.31 0.30 0.28	0.36 0.35 0.34 0.32	 	0.25 0.22 0.20 0.18	0.23 0.22 0.21 0.20	——————————————————————————————————————	0.16 0.14 0.13 0.12	0.24 0.22 0.19 0.18		0.72 0.68 0.64 0.60	1.10 1.05 1.01 0.98
8 10 12		6.2 6.0 6.0		2.3 2.3 2.3		0.27 0.25 0.25	0.31 0.30 0.29		0.15 0.14 0.13	0.19 0.18 0.18	,	0.10 0.09 0.08	0.15 0.14 0.13	 	0.57 0.52 0.50	0.93 0.90 0.88

NON-FERROUS VALVES AND FITTINGS 3, 4, 5

LINE SIZE	GLOBE VALVE	ANGLE VALVE	SHORT-RADIUS ELL	LONG-RADIUS ELL	TEE, LINE-FLOW	TEE, BRANCH-FLOW
(Inches) OD	Flare or Sweat	Flare or Sweat	Flare or Sweat	Flare or Sweat	Flare or Sweat	Flare or Sweat
1/2	37	12.8	2.5	1.7	0.9	3.5
5∕8 3∕4	28 23	9.9 7.8	2.2 2.0	1.5 1.4	0.9 0.9	3.2
½	19	6.7	1.9	1.3	0.9	2.8
11/8	15.0	5.0	0.46	0.32	0.43	1.37
13/8 15/8	13.4 12.0	4.4 3.5	0.42 0.40	0.29 0.27	0.36 0.31	1.33 1.29
21/8	10.4	2.9	0.38	0.25	0.28	1.19

NOTES: ¹ K=2gh/V²
² Based on Schedule 40 pipe

* Based on Type L copper tubing

* For screwed valves and fittings, use ferrous K-Factors

For OD sizes above 21/8", use welded ferrous K-Factors

VALVES AND FITTINGS EQUIVALENT LENGTHS

TABLE 4. EQUIVALENT LENGTHS OF VALVES AND FITTINGS

	actor or company or blifted being sen		Walter San Japan San Japan San Japan San Japan San Japan San Japan San Japan San Japan San Japan San Japan San			FERRO	US VAI	VES A	ND FIT	TINGS 2	. 8			Andrew Control of the		
LINE	GLOBE	VALVE	ANGLE	VALVE	SHO	RT-RADIU:	S ELL	FOŃ	G-RADIUS	ELL	TEE	E, LINE-FI	LOW	TEE,	BRANCH	FLOW
(Inches) IPS	Screwed	Flanged	Screwed	Flanged	Screwed	Flanged	Welded	Screwed	Flanged	Welded	Screwed	Flanged	Welded	Screwed	Flanged	Welded
1½ 3¼ 1	29 31 35		16 16 16		4.1 4.7 5.3	1.6	1.8	2.5 2.8	1.5	1.2	1.8 2.5 3.4	1.0	1.6	4.7 5.6 6.8	3.8	5.2
1¼ 1½ 2 2½ 3 4 5	46 51 63 — — — —	69 76 89 101 123 155 190 227	19 19 20 	22 22 25 28 36 48 63 78	7.1 7.9 9.0 — — — —	2.2 2.6 3.2 3.8 4.9 6.2 8.1 9.5	2.3 2.6 3.4 4.2 5.3 7.2 9.2	3.3 3.4 3.6 — — —	2.0 2.2 2.7 3.0 3.7 4.5 5.4 6.1	1.6 1.8 2.3 2.7 3.4 4.5 5.7 6.8	4.9 5.9 8.1 — — —	1.3 1.4 1.7 1.9 2.4 2.9 3.5 4.1	2.0 2.0 2.5 2.9 3.6 4.5 5.1 6.1	9.2 9.9 12.6 — — —	4.9 5.8 7.2 8.4 11 14 17 20	7.1 8.4 10.5 13 16 22 27 33
8 10 12	- -	295 370 465	-	110 142 173	-	13 16 19	15 18 22		7.1 8.7 10	9.0 11 14	- - -	4.7 5.6 6.2	7.1 8.7 10		27 32 39	44 56 68

NON-FERROUS VALVES AND FITTINGS²

LINE	GLOBE	VALVE	ANGLE	VALVE	SHORT-R	ADIUS ELL	LONG-RA	DIUS ELL	TEE, LII	NE-FLOW	TEE, BRA	NCH-FLOW
(Inches) OD	Screwed	Other 4	Screwed	Other 4	Screwed	Other 4	Screwed	Other 4	Screwed	Other 4	Screwed	Other 4
½ % ¾	40 39 39	70 72 75	21 22 23	24 25 25	4.7 5.4 6.2	4.7 5.7 6.5	2.9	3.2 3.9 4.5	1.9 2.3 2.9	1.7 2.3 2.9	5.1 6.2 7.1	6.6 8.2 9.7
½ 1½ 1½ 1½ 1%	45 54 64 75	78 87 102 115	23 25 27 28	28 29 33 34	7.0 8.1 9.9 12	7.8 2.7 3.2 3.8	3.7 4.2 4.6 5.0	5.3 1.9 2.2 2.6	3.7 5.2 6.9 8.7	3.7 2.5 2.7 3.0	8.2 11 13 14	12 8.0 10 12
2½ 2½ 3½ 3½	95 	141 159 185 216	30 	39 44 53 66	14 — — —	5.2 6.5 8.0 10	5.4	3.4 4.2 5.1 6.3	12	3.8 4.6 5.4 6.6	19 — — —	16 20 25 30
4½ 5½ 6½		248 292 346		76 96 119		12 14 17		7.3 8.8 10		7.3 7.9 9.3		35 42 50

NOTES: ${}^{1}L_{a}=K(D/f)$

^{*} Flare, sweat, flanged, etc., and based on Type L copper tubing

² Friction factors (f) determined at "practical" Reynolds Numbers based on 40 F suction lines having pressure-drop of 1.8 psi/100 ft

^a Based on Schedule 40 pipe

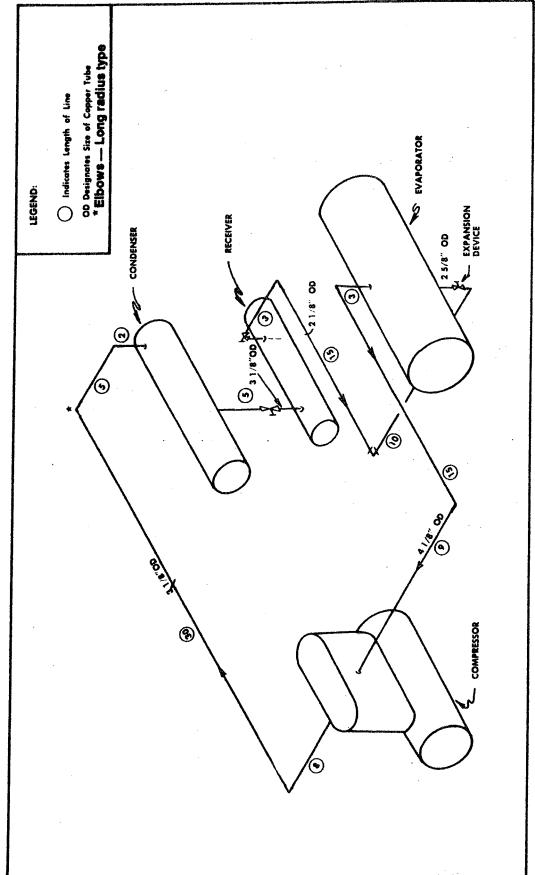
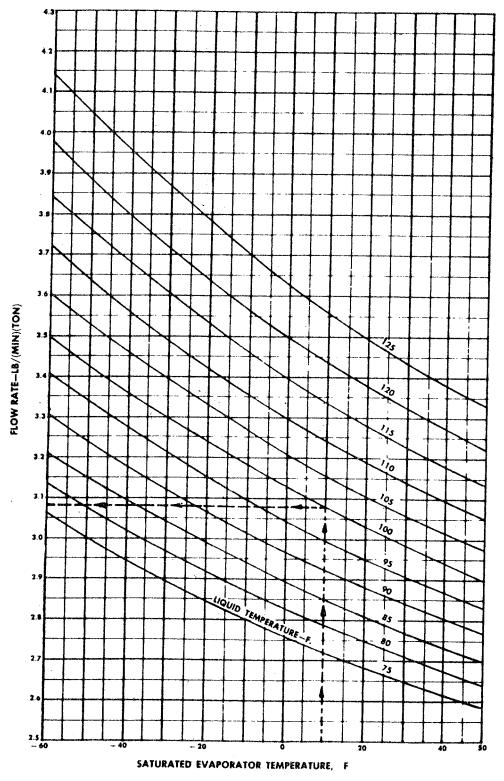
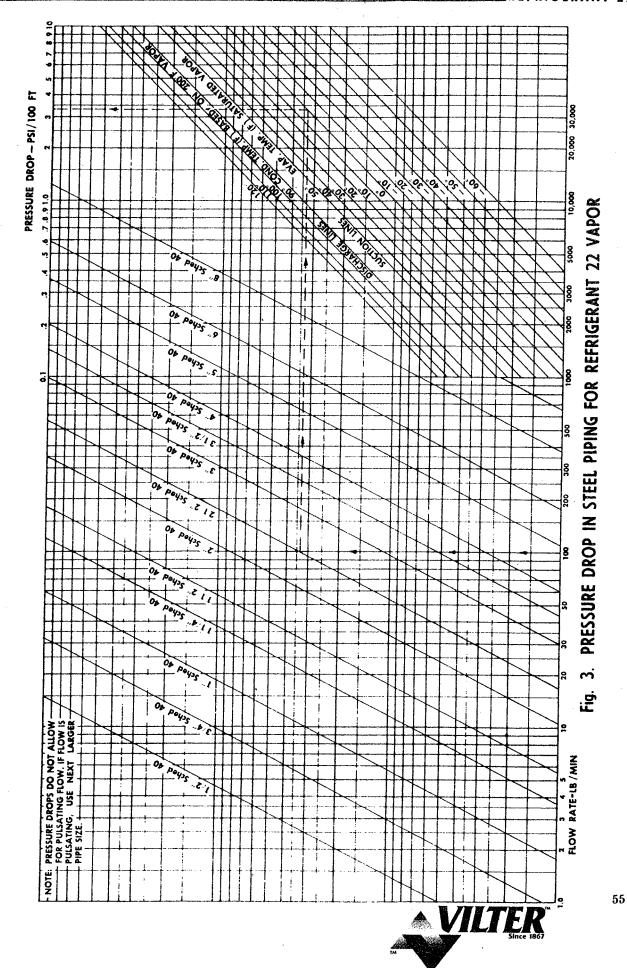
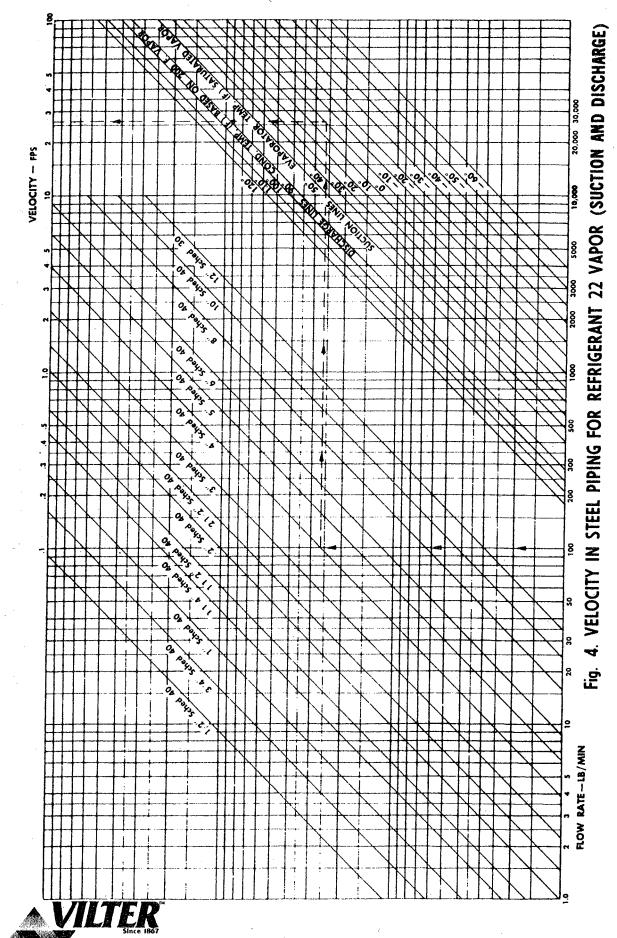
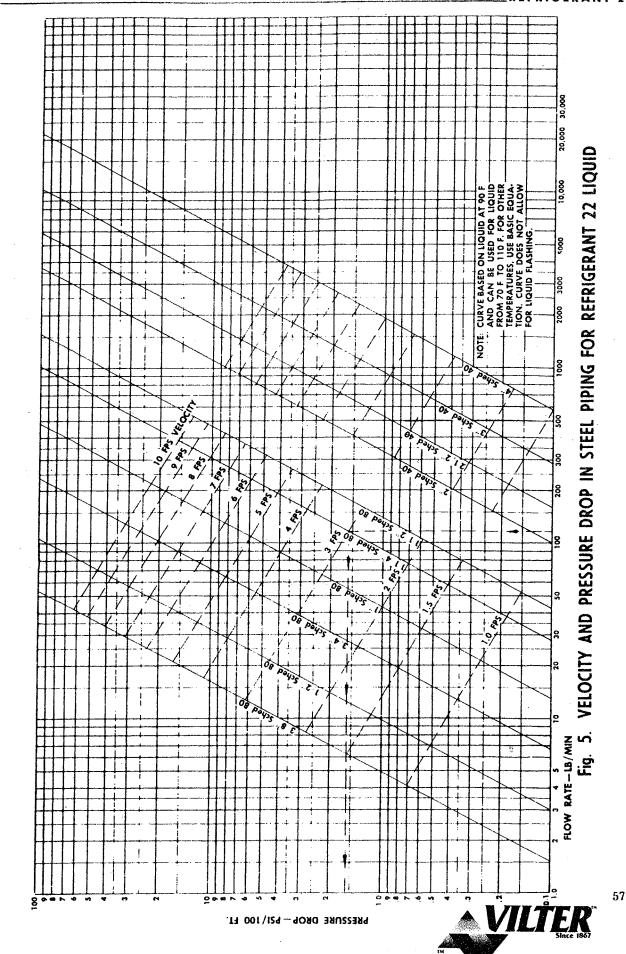
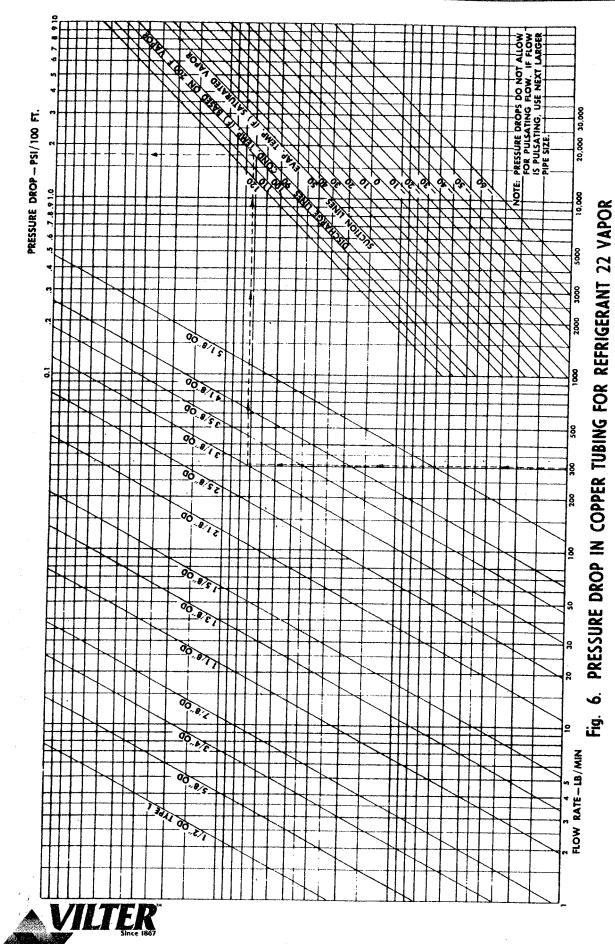
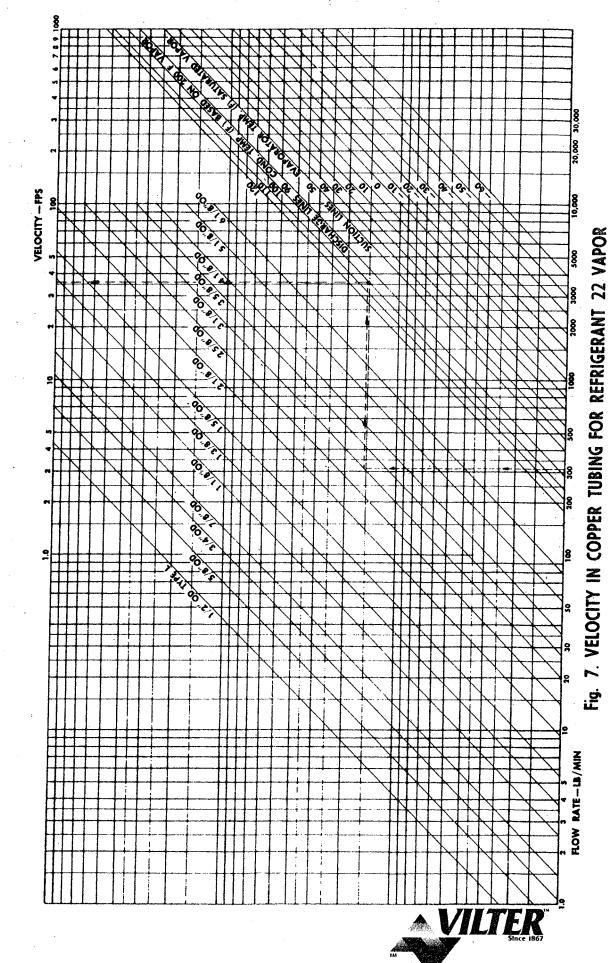


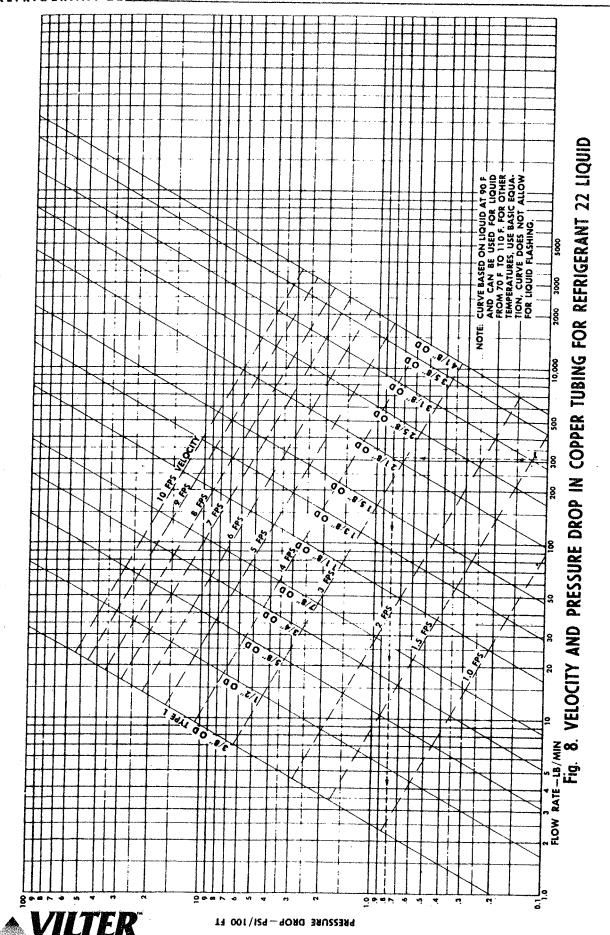
Fig. 1. SCHEMATIC PIPING LAYOUT FOR SAMPLE PROBLEM

VILTER Since 1867


Fig. 2. FLOW RATE PER TON OF REFRIGERATION FOR REFRIGERANT 22





58

60

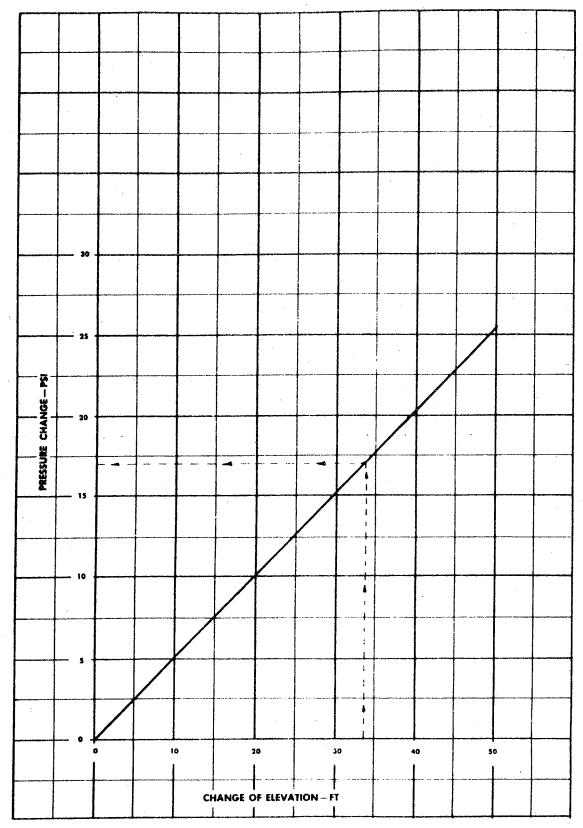


Fig. 9. RELATION OF PRESSURE-CHANGE TO ELEVATION-DIFFERENCE FOR REFRIGERANT 22 LIQUID VILTER 61

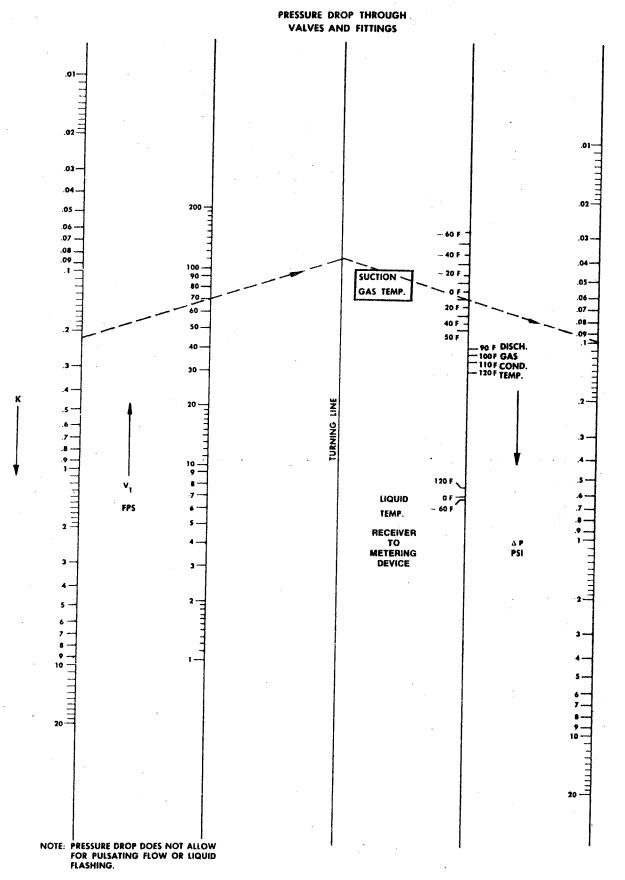


Fig. 10. PRESSURE DROP IN VALVES AND FITTINGS FOR REFRIGERANT 22

VILTER

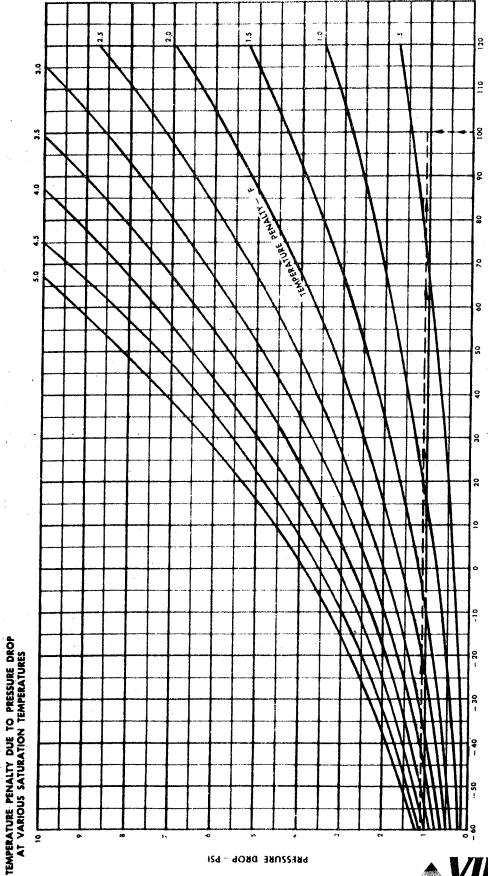


Fig. 11. TEMPERATURE PENALTY DUE TO PRESSURE DROP FOR REFRIGERANT 22

SATURATION TEMPERATURE - F

TABLE 5
THERMODYNAMIC PROPERTIES OF REFRIGERANT 22

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Temp		sure – r Sq. In.		me - per Lb.		nsity – er Cu. Ft.	I	Enthali Btu per		Entro Btu per (py – Lb.) (°R)	Temp
-115		Absolute	Gage	Liquid	Vapor	Liquid	Vapor		Latent	Vapor	Liquid	Vapor	
-110									110.205	91.020			
-105													
-100													
-96													
-90 3.4229 22.9522* 0.10771 13.235 92.843 0.75557 -12.16 106.759 95.544 -0.3091 .25787 -90 .85 4.0652 21.6528* 0.10825 11.301 93.76 0.8849 -1.031 10.159 95.125 .85		1 .	ł	1	J	I .	١.		1	1	1	l .	•
-85													
-80 4.7822 20.1846* 0.10881 9.6949 91.905 1.0315 -9.838 105.548 95.710 -0.02467 25342 -80 -76 -76 5.4363 18.8528* 0.010926 8.6043 91.525 0.11622 -8.878 105.053 96.175 -0.02206 0.25174 -76 -776													
-78													
-76													
-74 5.7896 18.1334 0.10949 8.1145 91.335 1.2324 -8.397 104.803 96.406 -0.0268 1.25902 -74 -70 6.5522 16.5809 0.10995 7.2318 90.952 1.3828 -7.914 104.519 96.868 -0.01832 2.4932 -70 -70 6.5522 16.5809 0.10995 7.2318 90.952 1.3828 -7.914 104.519 96.868 -0.01832 2.4932 -70		1		1	i		i .	Ī	į	ľ		l i	•
-72													
-70													
-68													
-66													
-64			i	1	ł .	•	i		1				
-62 8.3208 12.9807 .011089 .5.7891 .90.180 .17274 5.479 .103.264 .97.786 .01337 .24629 .62 .62 .63 .62 .62 .63 .63 .64 .97.786 .91.337 .24629 .62 .62 .63 .64 .65 .6													
-60													
-58 9.3388 10.9074* .011137 5.1989 89.791 .19235 -4.495 102.736 98.241 -0.00969 0.24414 -56 -56 9.8839 9.7975* 0.011161 4.9312 89.595 0.20279 -4.001 102.469 98.468 -0.00847 .24345 -54 -55 11.051 7.422* .011211 4.4440 89.202 .22502 -3.009 101.929 98.920 -0.00725 .24276 -52 -52 11.051 7.422* .011215 4.2424 89.004 .23683 -2.511 101.629 99.144 -0.0604 .24249 -50 -48 12.324 4.829* .011261 4.0140 88.806 .24913 -2.012 101.381 99.592 -0.0083 .24143 -48 -44 13.712 2.002* .011311 3.6334 88.407 .27523 -1.009 100.823 99.814 -0.0241 .24014 -44 14.451 0.498* .011337 3.4958 88.207 .28905 -0.055 100.418 100.036 -0.0120 .23951 -42 -40 15.222 0.526 .011333 3.2957 88.006 .30342 .0.000 100.257 100.257 .00000 .23888 -40 .38 16.024 1.328 .011349 3.1412 87.805 3.1835 .0.506 99.71 100.477 .00120 .23827 -38 .3417 .2805 .011339 .34142 .2954 87.602 .33384 .1.014 99.682 100.696 .00240 0.23767 -34 .3417 .3													
-56													
-54 10.454 8.636* .011186 4.6799 89.399 .21368 -3.506 102.200 98.694 -0.0847 .24345 -52 .52			1		1	1						i .	l .
-52 11.051 7.422* 0.011215 4.4440 89.202 2.2502 -3.009 101.929 98.920 -0.0725 24276 -52 -50 11.674 6.154* 0.10235 4.2224 89.004 2.3683 -2.511 101.131 99.369 -0.00483 24143 -48 -48 12.324 4.829* 0.011261 4.0140 88.806 2.4913 -2.012 101.381 99.369 -0.00483 24143 -48 -48 -44 13.712 2.002* 0.011311 3.6334 88.407 2.7523 -1.009 100.823 99.814 -0.00241 2.4014 -44 -42 14.451 0.499* 0.11337 3.4596 88.207 2.2995 -0.055 100.823 99.814 -0.00241 2.4014 -44 -42 14.451 0.499* 0.11363 3.2957 88.006 3.0342 -0.000 100.257 100.257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0000 0.0010 2.39818 -40 0.0016 0.0016 0.0016 0.0016 0.036 -0.0120 2.39818 -40 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.036 -0.0120 2.39818 -40 0.0016 0.001													
-50 11.674 6.154* 0.11235 4.2224 89.004 23.683 -2.511 101.656 99.144 -0.0604 24209 -50 -48 12.324 4.829* 0.11286 3.8179 88.607 0.26192 -1.511 101.03 99.992 -0.00361 0.24078 -46 13.012 2.002* 0.11317 3.6334 88.407 0.26192 -1.511 101.03 99.992 -0.00361 0.24078 -46 -42 14.451 0.499* 0.11337 3.4596 88.407 0.2593 -0.505 100.823 99.144 -0.0241 2.4014 -44													
-48 12.324 4.829* 0.011261 4.0140 88.806 24913 -2.012 101.381 99.369 -0.00483 24143 -48 -44 13.014 3.044 3.415* 0.011266 3.8179 88.607 2.7523 -1.09 100.823 99.814 -0.00241 2.4014 -44 -44 -44 -44 13.712 2.002* 0.011313 3.6334 88.407 2.7523 -1.099 100.823 99.814 -0.00241 2.4014 -44 -													
-46													
-44 13.712 2.002* 0.11311 3.6334 88.407 2.7523 - 1.009 100.823 99.814 00241 2.4014 -44 14.451 0.499* 0.11337 3.4596 88.007 2.8905 0.000 0.0.257 100.51 100.036 -0.0120 2.3551 -42 0.000 0.0.257 0.0257 0.000 0.257 0.0257 0.000 0.23888 -40 0.000 0.0.257 0.000 0.000 0.0.257 0										1	1		
-42													
-40													-44
-38													42
-36													
-34 17.728 3.032 .011442 2.8578 87.399 3.4992 1.524 99.391 100.914 .00359 23707 -34 .32		1									1		
-32													
-30													
-28 20.549 5.853 .011523 2.4887 86.785 .40182 3.061 98.503 101.564 .00716 .23534 -28 -26 21.564 6.868 0.011578 2.2746 86.379 0.42040 3.576 98.202 101.778 0.00835 0.23478 -26 -22 23.711 9.015 .011606 2.1760 86.165 .45956 4.611 97.593 102.204 .01072 .23369 -22 -20 24.845 10.149 .011662 1.9940 85.747 .50151 5.652 96.974 102.626 .01307 .23369 -22 -16 27.239 12.543 .001691 1.9999 85.537 0.52358 6.175 96.660 102.835 0.01425 0.23210 -16 -12 29.809 15.113 .011749 1.7544 85.114 5.699 96.344 103.043 .01425 0.23210 -16 -10 31.162 16.466 .011778													
-26													
-24 22.617 7.921 .011578 2.2746 86.372 .43964 4.093 97.899 101.992 .00953 .23423 -24 -20 24.845 10.149 .011634 2.0826 85.956 .48018 5.131 97.593 102.204 .01072 .23315 -20 -18 26.020 11.324 .011662 1.9940 85.747 .50151 5.652 96.974 102.626 .01307 .23262 -18 -16 27.239 12.543 .0011691 1.9099 85.537 0.52358 6.175 96.660 102.835 0.01425 0.23210 -16 -12 29.809 15.113 .011749 1.7544 85.14 .56999 7.224 96.025 103.250 .01659 .23108 -12 -10 31.162 16.466 .011778 1.6825 84.901 .59436 7.751 95.704 103.455 .01776 .23058 -10 -8 32.563 17.867 <	-28	20.549						5		101.564	.00716	.23534	
-22 23.711 9.015 .011606 2.1760 86.165 .45956 .46018 97.593 102.204 .01072 .23369 -22 -20 24.845 10.149 .011662 2.9806 85.956 .48018 5.131 97.285 102.415 .01189 .23369 -22 -16 27.239 12.543 .0011691 1.9909 85.537 0.52358 6.175 96.660 102.835 0.01425 0.23210 -16 -14 28.501 13.805 .011720 1.8302 85.326 .54640 6.699 96.344 103.043 .01542 .23159 -14 -10 31.162 16.466 .011778 1.6825 84.901 .59436 7.751 95.704 103.455 .01776 .23058 -10 -8 32.563 17.867 .011808 1.6141 84.688 .61954 8.280 95.380 103.660 .01892 .23008 -8 -6 34.011 19.315 <		21.564											
-20													
-18													
-16													
-14	ı	- 1		E				,					
-12 29.809 15.113 .011749 1.7544 85.114 .56999 7.224 96.025 103.250 .01659 .23108 .12 .10 .1764 .1778 .16825 .114 .56999 7.224 96.025 103.250 .01659 .23108 .10													
-10 31.162 16.466 .011778 1.6825 84.901 .59436 7.751 95.704 103.455 .01776 .23058 10													
-8 32.563 17.867 .011808 1.6141 84.688 .61954 8.280 95.380 103.660 .01892 .23008 -8 -6 34.011 19.315 .0.011838 1.5491 84.473 0.64555 8.810 95.053 103.863 0.02009 0.22960 -6 -4 35.509 20.813 .011868 1.4872 84.258 .67240 9.341 94.724 104.065 .02125 .22912 -4 -2 37.057 22.361 .011899 1.4283 84.042 .70012 9.874 94.391 104.266 .02241 .22864 -2 0 38.657 23.961 .011930 1.3723 83.825 .72872 10.409 94.056 104.465 .02357 .22817 0 2 40.309 25.613 .011961 1.3189 83.606 .75822 10.945 93.718 104.663 .02472 .22771 2 4 42.014 27.318 0.011992 1.2680 83.387 0.78865 11.483 93.378 104.860 0.02587 0.22725 4 6 43.775 29.079 .012024 1.2195 83.167 .82003 12.022 93.034 105.056 .02703 .22680 6 8 45.591 30.895 .012056 1.1732 82.946 .85237 12.562 92.688 105.250 .02818 .22636 8 10 47.464 32.768 .012088 1.1290 82.724 .88571 13.104 92.338 105.442 .02932 .22592 10 12 49.396 34.700 .012121 1.0869 82.501 .92005 13.648 91.986 105.633 .03047 .22548 12 14 51.387 36.691 .0012154 1.0466 82.276 0.95544 14.193 91.630 105.823 0.03161 0.22505 14 15 53.438 38.742 .012188 1.0082 82.051 0.99188 14.739 91.272 106.011 0.3275 .22463 16 18 55.551 40.855 .012221 0.97144 81.825 1.0294 15.288 90.910 106.198 .03389 .22421 18 20 57.727 43.031 .012255 0.93631 81.597 1.0680 15.837 90.545 106.383 .03503 .22379 20													
-6													
-4 35.509 20.813 .011868 1.4872 84.258 .67240 9.341 94.724 104.065 .02125 .22912 -4 -2 37.057 22.361 .011899 1.4283 84.042 .70012 9.874 94.391 104.266 .02241 .22864 -2 0 38.657 23.961 .011930 1.3723 83.825 .72872 10.409 94.056 104.465 .02357 .22817 0 2 40.309 25.613 .011961 1.3189 83.666 .75822 10.945 93.718 104.663 .02472 .22771 2 4 42.014 27.318 0.011992 1.2680 83.387 0.78865 11.483 93.378 104.663 0.02472 .22771 2 4 42.014 27.318 0.011992 1.2680 83.167 .82003 12.022 93.034 105.056 0.2703 .22680 6 8 45.591 30.895 .012056				3	1	i		1	1		I		
-2 37.057 22.361 .011899 1.4283 84.042 .70012 9.874 94.391 104.266 .02241 .22864 -2 0 38.657 23.961 .011930 1.3723 83.825 .72872 10.409 94.056 104.465 .02357 .22817 0 2 40.309 25.613 .011961 1.3189 83.606 .75822 10.945 93.718 104.663 .02472 .22771 2 4 42.014 27.318 .0011992 1.2680 83.387 0.78865 11.483 93.378 104.860 0.02587 0.22725 4 6 43.775 29.079 .012024 1.2195 83.167 .82003 12.022 93.034 105.056 .02703 .22680 6 8 45.591 30.895 .012056 1.1732 82.946 .85237 12.562 92.688 105.250 .02818 .22636 8 10 47.464 32.768 .012088													
0 38.657 23.961 .011930 1.3723 83.825 .72872 10.409 94.056 104.465 .02357 .22817 0 2 40.309 25.613 .011961 1.3189 83.606 .75822 10.945 93.718 104.663 .02472 .22771 2 4 42.014 27.318 0.011992 1.2680 83.387 0.78865 11.483 93.378 104.860 0.02587 0.22725 4 6 43.775 29.079 .012024 1.2195 83.167 .82003 12.022 93.034 105.056 .02703 .22680 6 8 45.591 30.895 .012056 1.1732 82.946 .85237 12.562 92.688 105.250 .02818 .22636 8 10 47.464 32.768 .012088 1.1290 82.724 .88571 13.104 92.338 105.442 .02932 .22592 10 12 49.396 34.700 .012154 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>													
2 40.309 25.613 .011961 1.3189 83.606 .75822 10.945 93.718 104.663 .02472 .22771 2 4 42.014 27.318 0.011992 1.2680 83.387 0.78865 11.483 93.378 104.860 0.02587 0.22725 4 6 43.775 29.079 .012024 1.2195 83.167 .82003 12.022 93.034 105.056 .02703 .22680 6 8 45.591 30.895 .012056 1.1732 82.946 .85237 12.562 92.688 105.250 .02818 .22636 8 10 47.464 32.768 .012088 1.1290 82.724 .88571 13.104 92.338 105.442 .02932 .22592 10 12 49.396 34.700 .012121 1.0869 82.501 .92005 13.648 91.986 105.633 .03047 .22548 12 14 51.387 36.691 .0012154 1.0466 82.276 0.95544 14.193 91.630 105.823 0.031													-2
4 42.014 27.318 0.011992 1.2680 83.387 0.78865 11.483 93.378 104.860 0.02587 0.22725 4 6 43.775 29.079 .012024 1.2195 83.167 .82003 12.022 93.034 105.056 .02703 .22680 6 8 45.591 30.895 .012056 1.1732 82.946 .85237 12.562 92.688 105.250 .02818 .22636 8 10 47.464 32.768 .012088 1.1290 82.724 .88571 13.104 92.338 105.442 .02932 .22592 10 12 49.396 34.700 .012121 1.0869 82.501 .92005 13.648 91.986 105.633 .03047 .22548 12 14 51.387 36.691 .0012154 1.0466 82.276 0.95544 14.193 91.630 105.823 0.03161 0.22505 14 16 53.438 38.742 .012188 1.0082 82.051 0.99188 14.739 91.272 106.011													
6 43.775 29.079 .012024 1.2195 83.167 .82003 12.022 93.034 105.056 .02703 .22680 6 8 45.591 30.895 .012056 1.1732 82.946 .85237 12.562 92.688 105.250 .02818 .22636 8 10 47.464 32.768 .012088 1.1290 82.724 .88571 13.104 92.338 105.442 .02932 .22592 10 12 49.396 34.700 .012121 1.0869 82.501 .92005 13.648 91.986 105.633 .03047 .22548 12 14 51.387 36.691 .0012154 1.0466 82.276 0.95544 14.193 91.630 105.823 0.03161 0.22505 14 16 53.438 38.742 .012188 1.0082 82.051 0.99188 14.739 91.272 106.011 .03275 .22463 16 18 55.551 40.855 .012221 0.97144 81.825 1.0294 15.288 90.910 106.198 .				1		- 1		1				1	:
8 45.591 30.895 .012056 1.1732 82.946 .85237 12.562 92.688 105.250 .02818 .22636 8 10 47.464 32.768 .012088 1.1290 82.724 .88571 13.104 92.338 105.442 .02932 .22592 10 12 49.396 34.700 .012121 1.0869 82.501 .92005 13.648 91.986 105.633 .03047 .22548 12 14 51.387 36.691 .012154 1.0466 82.276 0.95544 14.193 91.630 105.823 0.03161 0.22505 14 16 53.438 38.742 .012188 1.0082 82.051 0.99188 14.739 91.272 106.011 .03275 .22463 16 18 55.551 40.855 .012221 0.97144 81.825 1.0294 15.288 90.910 106.198 .03389 .22421 18 20 57.727 43.031 .012255 0.93631 81.597 1.0680 15.837 90.545 106.383 .03503 .22379 20		42.014	27.318						93.378	104.860			
10 47.464 32.768 .012088 1.1290 82.724 .88571 13.104 92.338 105.442 .02932 .22592 10 12 49.396 34.700 .012121 1.0869 82.501 .92005 13.648 91.986 105.633 .03047 .22548 12 14 51.387 36.691 0.012154 1.0466 82.276 0.95544 14.193 91.630 105.823 0.03161 0.22505 14 16 53.438 38.742 .012188 1.0082 82.051 0.99188 14.739 91.272 106.01 .03275 .22463 16 18 55.551 40.855 .012221 0.97144 81.825 1.0294 15.288 90.910 106.01 93.389 .22421 18 20 57.727 43.031 .012255 0.93631 81.597 1.0680 15.837 90.545 106.383 .03503 .22379 20		43.775	29.079										
12 49.396 34.700 .012121 1.0869 82.501 .92005 13.648 91.986 105.633 .03047 .22548 12 14 51.387 36.691 0.012154 1.0466 82.276 0.95544 14.193 91.630 105.823 0.03161 0.22505 14 16 53.438 38.742 .012188 1.0082 82.051 0.99188 14.739 91.272 106.011 .03275 .22463 16 18 55.551 40.855 .012221 0.97144 81.825 1.0294 15.288 90.910 106.198 .03389 .22421 18 20 57.727 43.031 .012255 0.93631 81.597 1.0680 15.837 90.545 106.383 .03503 .22379 20													
14 51.387 36.691 0.012154 1.0466 82.276 0.95544 14.193 91.630 105.823 0.03161 0.22505 14 16 53.438 38.742 .012188 1.0082 82.051 0.99188 14.739 91.272 106.011 .03275 .22463 16 18 55.551 40.855 .012221 0.97144 81.825 1.0294 15.288 90.910 106.198 .03389 .22421 18 20 57.727 43.031 .012255 0.93631 81.597 1.0680 15.837 90.545 106.383 .03503 .22379 20													
16 53.438 38.742 .012188 1.0082 82.051 0.99188 14.739 91.272 106.011 .03275 .22463 16 18 55.551 40.855 .012221 0.97144 81.825 1.0294 15.288 90.910 106.198 .03389 .22421 18 20 57.727 43.031 .012255 0.93631 81.597 1.0680 15.837 90.545 106.383 .03503 .22379 20	1	<u>.</u>				i i					3		
18 55.551 40.855 .012221 0.97144 81.825 1.0294 15.288 90.910 106.198 .03389 .22421 18 20 57.727 43.031 .012255 0.93631 81.597 1.0680 15.837 90.545 106.383 .03503 .22379 20									91.630	105.823			
20 57.727 43.031 012255 0.93631 81.597 1.0680 15.837 90.545 106.383 .03503 .22379 20													
		57 727	13 031							106 202			
	ŽŽ	59.967	15.271	.012290				16.389			.03503	.22338	22

^{*}Inches of mercury below one standard atmosphere.

TABLE 5 (Continued) THERMODYNAMIC PROPERTIES OF REFRIGERANT 22

Temp		sure – r Sq. In.		ume . per Lb.		nsity – er Cu. Ft.		Enthalpy Blu per L		Entre Btu per (Temp	
t	Absolute P	p	Liquid V _f	Vapor Vg	Liquid 1/v _I	Vapor 1/v _g	Liquid h _f	Latent h _{fg}	Vapor h _g	Liquid s _f	Vapor s _g	,
24	62.272	47.576					16.942	89.807	106.748		0.22297	24
26	64.644	49.948			80.907 80.675		17.496 18.052	89.433	106.928		.22257	26
28	67.083 69.591	52.387 54.895			80.441		18.609	89.055 88.674	107.107 107.284		-22217	28
30 32	72.169	57.473					19.169	88.290	107.459		.22178	30
	74.818	60.122	ì	ţ	79.971	1.3715	19.729	87.903	107.632		1 .	32
34 36	77.540	62.844			79.733		20.292	87.512	107.804		0.22100	34
38	80.336	65.640			79.495		20.856	87.118	107.974	.04520	.22024	36 38
40	83.206	68.510			79.255		21.422	86.720	108.142	.04632	.21986	40
42	86.153	71.457	.012656	.63557	79.013	1.5734	21.989	86.319	108.308	.04744	.21949	42
44	89.177	74.481		0.61448	78.770	1.6274	22.558	85.914	108.472	0.04855	0.21912	44
46	92.280	77.584			78.526	1.6829	23.129	85.506	108.634	. 04967	.21876	46
48	95.463	80.767			78.280	1.7398	23.701	85.094	108.795	.05079	.21839	48
50	98.727	84.031			78.033	1.7984	24.275	84.678	108.953	.05190	.21803	50
52	102.07	87.38	.012856	1	77.784	1.8585	24.851	84.258	109.109	.05301	.21768	52
54	105.50	90.81	0.012898	0.52078	77.534	1.9202	25.429	83.834	109.263	0.05412	0.21732	54
56 50	109.02	94.32	.012940		77.282	1.9836	26.008	83.407	109.415	.05523	.21697	56
58 60	112.62 116.31	97.93 101.62	.012982	.48813	77.028 76.773	2.0486 2.1154	26.589 27.172	82.975 82.540	109.564 109.712	.05634	.21662	58
62	120.09	105.39	.013069		76.515	2.1840	27.757	82.100	109.712	.05745 .05855	.21627	60 62
64	123.96	109.26	0.013114	0.44358	76.257	2.2544	28.344	81.656	1 10.000	0.05966	1	1
66	127.92	113.22	.013159		75.996	2.3266	28.932	81.208	1 10.140	.06076	0.21558	64 66
68	131.97	117.28	.013204	.41653		2.4008	29.523	80.755	110.278	.06186	.21490	68
70	136.12	121.43	.013251	.40373	75.469	2.4769	30.116	80.298	110.414	.06296	.21456	70
72	140.37	125.67	.013297	.39139	75.202	2.5550	30.710	79.836	110.547	.06406	.21422	72
74	144.71	130.01	0.013345	0.37949	74.934	2.6351	31.307	79.370	110.677	0.06516	0.21388	.74
76	149.15	134.45	.013393	.36800	74.664	2.7174	31.906	78.899	110.805	.06626	.21355	76
78	153.69	138.99	.013442		74.391	2.8018	32.506	78.423	110.930	.06736	.21321	78
80 82	158.33 163.07	143.63 148.37	.013492	.34621	74.116 73.839	2.8885 2.9774	33.109 33.714	77.943 77.457	111.052	.06846	.21288	80
	1	ı	0.013594	0.32588	73.560	i		1	111.171	,06956	.21255	82
84 86	167.92 172.87	153.22 158.17	.013647		73.300	3.0686 3.1622	34.322 34.931	76.966 76.470	111.288 111.401	0.07065 .07175	0.21222	84
88	177.93	163.23	.013700		72.994	3.2583	35.543	75.968	111.512	.07285	.21188	86 88
90	183.09	168.40	.013754	. 29789	72.708	3.3570	36.158	75.461	111.619	.07394	.21122	90
92	188.37	173.67	.013809	.28917	72.419	3.4582	36.774	74.949	111.723	.07504	.21089	92
94	193.76	179.06	0.013864	0.28073	72.127	3.5621	37.394	74.430	111.824	0.07613	0.21056	94
96	199.26	184.56	013921	. 27257	71.833	3.6688	38.016	73.905	111.921	.077 23	.21023	96
98		190.18	.013979	.26467	71.536	3.7783	38.640		112.015	.07832	.20989	98
100 102		195.91 201.76	.014038 .014098	.25702 .24962	71.236 70.933	3.8907	39.267		112.105	.07942	.20956	100
				1		4.0062	39.897		112.192	.08052	.20923	102
104 106	222.42 228.50	207.72 213.81	0.014159 .014221	0.24244 .23549	70.626 70.317	4.1247 4.2465	40.530	71.744	112.274	0.08161	0.20889	104
108		220.02	.014285		70.005	4.3715	41.166 41.804		112.353 112.427	-08271	20855	106
110		226.35	.014350		69.689	4.5000	42.446		112.427	.08381 0.08491	.20821 .20787	108 110
112		232.80	.014416		69.369	4.6321	43.091		112.564	.08601	.20753	112
114	254.08	239.38	0.014483	0.20974	69.046	4.7677	43.739	68.886	112.626		0.20718	114
116		246.10	.014552		68.719	4.9072	44.391		112.682	.08821	.20684	116
118		252.94	.014622		68.388	5.0506	45.046	67.688	112.735	.08932	.20649	118
120		259.91	.014694		68.054	5. 1981	45.705		112.782	.09042	.20613	120
122		267.01	.014768		67.714	5.3498	46.368	. 1	112.824	.09153	.20578	122
124		274.25	0.014843		67.371	5.5058	47.034		112.860		0.20542	124
126 128		281.63 289.14	.014920 .014999		67.023 66.670	5.6665	47.705	65. 186	112.891	.09375	.20505	126
130		296.80	.015080		66.312	5.8319 6.0022	48.380 49.059		112.917 112.936	.09487 .09598	.20468 .20431	128
132		304.60	.015163		65.949	6.1777	49.743		112.936	.09598	.20393	130 132
134		312.54	0.015248		65.581	6.3585	50.432		112.955	1	0.20354	134
136		320.63	.015336		65.207.	6.5450	51.125		112.955	.09936	.20315	134
138	343.56	328.86	.015426	.14843	64.826	6.7374	51.824		112.947	.10049	.20275	138
140	351.94	337. 25	.015518	.14418	64.440	6.9360	52.528		112.931	.10163	.20235	140

TABLE 6 REFRIGERANT 22 FLOW RATE POUNDS/MINUTE/TON REFRIGERATION

	C	Booster Discharge Temperature (°F)							Condensing Discharge Temperature (°F)							
Temp.	Corres. Suction	-20	-10	0	10	20	. 30	40	50	60	70	80	90	100	110	120
Suction	Pressure		Corresponding Discharge Pressure (Psig)							Corresponding Discharge Pressure (Psig)						
(°F)	(Psig)	10.3	16,6	24.1	32.9	43.3	55.2	69.0	84.7	102.5		145.0				
-70	16.55*	2.25	2.32	2.39	2.47	2.56	2.66	2.77	2.90	2.90						
-60	11.89*	2.22	2.29	2.36	2.44	2.52	2.62	2.73	2.85	2.85	2.98	ļ				1
-50	6.03*	2.19	2.26	2.32	2.40	2.48	2.58	2.68	2.80	2.80	2.93	3,08	1		l	
-40	0.61	2.16	2.22	2.29	2.37	2.45	2.54	2.64	2.75	2.75	2.88	3.02	3.18		İ]
-30	5.02	2.13	2.20	2.26	2.34	2.41	2.50	2.60	2.71	2.71	2.83	2.97	3.12	3.30		ł
-20	10.30	İ	2.17	2.24	2.30	2.38	2.47	2.56	2.67	2.67	2.78	2.92	3.07	3.24	3,42	
-10	16.60	İ		2.20	2.27	2.35	2.43	2.52	2.63	2.63	2.74	2.87	3.02	3.18	3.36	3.57
0	24.10	l		1	2.24	2.32	2.40	2.49	2.59	2.59	2.70	2.83	2.97	3.12	3.29	3.50
10	32.90					2.29	2.37	2.46	2.56	2.56	2.66	2.78	2.92	3.07	3.24	3.43
20	43.30						2.34	2.43	2.52	2.52	2.63	2.75	2.88	3.02	3.18	3.37
30	55.20							2.40	2.49	2.49	2.59	2.71	2.83	2.98	3.14	3.32
40	69.00			ŀ		ŀ			2.46	2.46	2.56	2.67	2.80	2.94	3.09	3.26
50	84.70									2.43	2.53	2.64	2.76	2.90	3.05	3.22

^{*}Inches mercury below one atmosphere.

TABLE 7 REFRIGERANT 22 FLOW RATE CUBIC FEET/MINUTE/TON REFRIGERATION

_		Booster Discharge Temperature (°F)								Condensing Discharge Temperature (°F)						
Temp.	Corres. Suction	-20	-10	0	10	20	30	40	50	60	70	80	90	100	110	120
Suction (°F)	Pressure (Paig)	Corresponding Discharge Pressure (Psig)							Corresponding Discharge Pressure (Psig)							
(1)	(1 4.8)	10.3	16.6	24.1	32.9	43.3	55.2	69.0	84.7	102.5	122.5	145.0	170.1	197.9	228.7	262.6
-70	16,55*	16.2	16.7	17.2	17.8	18.4	19.1	19.9	20.8	20.8						
60	11.89*	12.1	12.5	12.9	13.3	13.7	14.3	14.9	15.5	15.5	16.2			<u> </u>	Į.	
-50	6.03*	9.18	9.48	9.73	10.1	10.4	10.9	11.2	11.7	11.7	12.3	12.9		l	1	
-40	0.61	7.08	7.28	7.52	7.77	8.04	8.33	8.66	9.02	9.02	9.45	9.90	10.4			
-30	5.02	5.52	5.70	5.85	6.06	6.25	6.48	6.73	7.02	7.02	7.33	7.70	8.08	8.55		
-20	10.30		4.50	4.64	4.77	4.93	5.12	5.31	5.54	5.54	5.77	6.06	6.37	6.72	7.09	
-10	16.60			3.70	3.82	3.95	4.09	4.23	4.42	4.42	4.61	4.82	5.08	5.35	5.65	6.00
0	24.10				3.08	3.19	3.30	3.42	3.56	3.56	3.71	3.89	4.08	4.28	4.52	4.81
10	32.90					2.59	2.68	2.78	2.89	2.89	3.01	3.14	3.30	3.47	3.66	3.88
20	43.30						2.19	2.28	2.36	2.36	2.46	2.58	2.70	2.83	2.98	3.16
30	55,20					٠.		1.88	1.95	1.95	2.02	2.12	2.21	2,33	2.46	2.60
40	69.00	l i							1.61	1.61	1.68	1.75	1.84	1.93	2.03	2,14
50	84.70								!	1.35	1.40	1.46	1.53	1.61	1.69	1.78

^{*} Inches of mercury below one atmosphere

Figures to left of heavy line are based on booster flow-rate of two-stage system with liquid subcooling to within 10°F of intermediate. Figures to right of heavy line are based on single stage.

REFRIGERANT 502 PIPING DATA

Piping data for Refrigerant R-502 is available from several manufacturers. However, since the majority of the information in this section was taken from a Du Pont company bulletin, no changes have been made in changing the "Freon" 502 Du Pont trademark reference to the generic R-502 nomenclature.

Data for the proper sizing of "Freon" 502 refrigerant piping are shown in Table I and in chart form in Figures 1 through 5. The diagrams are not intended to set standards, but to provide pressure drop and velocity data which can assist the design engineer in determining proper pipe sizing for individual applications.

Table 1 gives "Freon" 502 line capacities for single or high stage applications. Values are based on 105°F. condensing temperatures. Multipliers for other condensing temperatures appear under Table 1, footnote number (3).

Basis of Charts

The pressure-drop charts given here are based on calculations using the commonly accepted Darcy-Weisbach formula and Darcy friction factors from the Moody Chart. The calculations and presentation are consistent with those used in the other refrigerant sections of this manual. Tables of "K-factors", equivalent lengths of valves and fittings, and piping dimensions in the other refrigerant sections will also apply to "Freon" 502 calculations.

Refrigerant Flow

For the determination of velocity and pressure drop in refrigerant piping it is necessary to know the refrigerant flow rate.

Figure 1 provides a method for determining refrigerant flow in pounds per minute per ton of refrigeration. It is based on no liquid subcooling and no superheating of the vapor at evaporator conditions. Enter the chart at the appropriate evaporating temperature and move vertically to the design condensing temperature. At this intersection read the refrigerant flow in pounds per minute per ton. Multiply the nominal capacity in tons by this factor and an estimate of pounds flow per minute is obtained. This flow rate is then used to enter the other charts. Refrigerant flow rates calculated by other means and used with the charts in this bulletin may result in incorrect line sizes.

Factors for Selecting Suction Vapor Line Sizes

Compressor suction vapor lines must be sized with the best compromise between minimum pressure drop and adequate velocity for oil return. Pressure drop in these return gas lines will result in loss in compressor or system capacity. On the other hand, systems designed only for minimum pressure drop in the return lines may have velocities too low for the adequate return of oil. Experience to date indicates that the velocity in "Freon" 502 refrigerant return gas lines from systems utilizing suction line heat exchangers should be at least equal to that recommended for Refrigerant 22 refrigerant systems. Adequate oil return has been obtained from all systems designed for Refrigerant 22 and converted to "Freon" 502. In most cases these conversions resulted in slightly higher return gas velocities for "Freon" 502. Care must be exercised in selecting suction line heat exchangers and suction line filters as the higher density of the returning "Freon" 502 gas may result in excessive pressure drop relative to Refrigerant 22.

Factors for Selecting Discharge Vapor Line Sizes

Pressure drop in compressor discharge lines also affects compressor capacity but to a lesser degree than pressure drop in suction lines. Oil movement through these lines is not normally a consideration in their selection. Engineering and economic considerations used in selecting Refrigerant 22 discharge pipe sizes apply to systems utilizing "Freon" 502. In general, it is suggested that discharge lines for "Freon" 502 systems be the same as for Refrigerant 22 systems of equivalent capacity.

Factors for Selecting Liquid Line Sizes

Pressure drop in liquid lines does not adversely affect system capacity or power unless flashing occurs in these lines. The volume flow rate of "Freon" 502 in liquid lines will be from 50% to 100% greater than that in an equivalent Refrigerant 22 system. Figure 4 provides the pressure drop and velocity data for the flow of "Freon" 502 through liquid lines. Pipe size selection for liquid lines between condenser and receiver, and between receiver and evaporator should be based on the same velocity and pressure drop considerations as used for Refrigerant 22. In some instances, this may result in larger liquid lines for "Freon" 502.

How to Use the Charts

- 1. Determine the flow rate in pounds per minute from Figure 1. With Figure 1 use saturated evaporator temperature and liquid temperature, disregarding any suction superheating. Total flow equals lb/(min) (ton) times system tonnage.
- 2. Determine pressure drop, psi per 100 ft, in copper tubing for the suction and discharge lines for the total flow, from Figure 2. The pressure drop through any size line is found by projecting vertically, from the flow rate on the lower scale, to the intersection with the line size to be used. At this intersection, follow the horizontal line to the right and intersect with the vapor temperature line, and then project upward to the top scale to read the pressure drop. Prorate the pressure drop according to the actual length using the straight pipe length plus the equivalent length of valves and fittings (equivalent lengths are listed on pages 10, 30, and 52 of this Manual).
- 3. Using the total refrigerant flow, lb per min, determine the velocity for suction and discharge lines in Figure 3. This chart is read in the same manner as Figure 2.
- 4. For liquid lines, determine the pressure drop and velocity, using Figure 4. The liquid-flow rate in lb/min, as read on the lower scale, is projected upward to the intersection of a given pipe size. The velocity in ft per sec can be read at this point and a pressure drop in psi per 100 ft equivalent length can be read on the ordinate scale. (The total flow for liquid lines is the same as that in the vapor lines as found in Step 1.) Prorate the pressure drop, using the ratio of actual pipe length versus 100 ft. Valves and fittings in liquid lines are treated in the same manner as outlined in Step 2 for vapor lines.
- 5. Figure 5 is used to determine the pressure drop (or gain) in a liquid line when there is an appreciable change in elevation between the condenser or receiver and the evaporator.

TABLE 1 REFRIGERANT LINE CAPACITIES FOR REFRIGERANT 502 (FOR SINGLE OR HIGH STAGE APPLICATIONS)

(Tons of Refrigeration Resulting in a Line Friction Drop (ΔP in psi) per 100 Ff Equivalent Pipe Length as Shown, with Corresponding (ΔT) Change in Saturation Temp.)

			Suction Lin	$\cos \Delta T = 2 F$			Discharge $\Delta T = 1.0 \text{ F}$ Lines $\Delta P = 3.15$			Liquid Line	5 4	
Line Size Type L Copper,	Suction Temp, F							Saturated Suction Temp			Velocity	ΔT=1 F
OD	-60 $\Delta P = 0.31$	-40 $\Delta P = 0.94$	-20 $\Delta P = 1.33$	$\begin{array}{c} 0 \\ \Delta P = 1.83 \end{array}$	$\begin{array}{c} 20 \\ \Delta P = 2.43 \end{array}$	$\begin{array}{c} 40 \\ \Delta P = 3.14 \end{array}$	-40	0	40	Copper, OD	=100 fpm	$\Delta P = 3.15$
	0.10	0.11	0.15	0.22	0.34	0.49	0.61	0.62	0.78	1	1.61	2.40
<u>\$</u>	0.11	0.15	0.26	0.42	0.63	0.91	1.14	1.27	1.45	8	2.58	4.52
7	0.23	0.41	0.68	1.09	1.64	2.39	2.98	3.34	3.80	į	5.35	12.01 24.43
, 1 1	0.46	0.82	1.38	2.20	3.33	4.83	6.02	6.74	7.66	11	9.13	24.43
13	0.80	1.44	2.42	3.84	5.80	8.41	10.49	11.74	13.34	13	13.90	42,71
1 3 1 5	1.27	2.28	3.83	6.07	9.16	13.29	16.51	18.49	21.01	1 🛊	19.68	67.69
- 2 <u>i</u>	2.65	4.76	7.97	12.63	18.98	27.45	34.03	38.14	43.36	21 25	34.23	140.87
$2\frac{1}{8}$ $2\frac{5}{8}$	4.71	8.44	14.12	22.29	33.50	48.38	59.93	67.18	76.35	25	52.79	249.43
34	7.56	13.54	22.58	35.56	53.38	77.02	95.34	107.2	121.5	31	75.35	398.62
3 t 3 t	11.30	20.15	33.58	52.83	79.25	114.56	141.4	158.6	180.1	3 1 35	101.9	593.10
41	15.98	28.47	47.39	74.49	111.78	160.90	199.0	223.1	253.5	4	132.5	837.24
5 1 6 1 1	28.71	51.07	84.85	133.32	199.37	286.92	354.3	397.2	451.2	-		. —
6 Ĭ	46.35	82.31	136.77	214.07	319.89	459.97	567.6	636.5	723.1	-		

NOTES:

- (1) For Other ΔT 's and Equivalent Lengths, L_e Line Capacity (Tons)
- = Table Tons $\times \left(\frac{100}{L_{\bullet}} \times \frac{\text{Actual } \Delta T \text{ Loss Desired}}{\text{Table } \Delta T \text{ Loss}}\right)^{0.55}$
- (2) For other Tons and Equivalent Lengths in a given pipe size

$$\Delta T = \text{Table } \Delta T \times \frac{L_{\bullet}}{100} \times \left(\frac{\text{Actual Tons}}{\text{Table Tons}}\right)^{1.8}$$

(3) Values are	based on	105	F conder	sing	tempe	rature.	For
other condensing	temperati	ıres,	multiply	table	tons	by the	fol-

Suction Lines	Hot Gas Lines
1.20	.83
1.12	.91
1.04	.97
.96	1.02
.88	1.08
.80	1.16
	1.20 1.12 1.04 .96

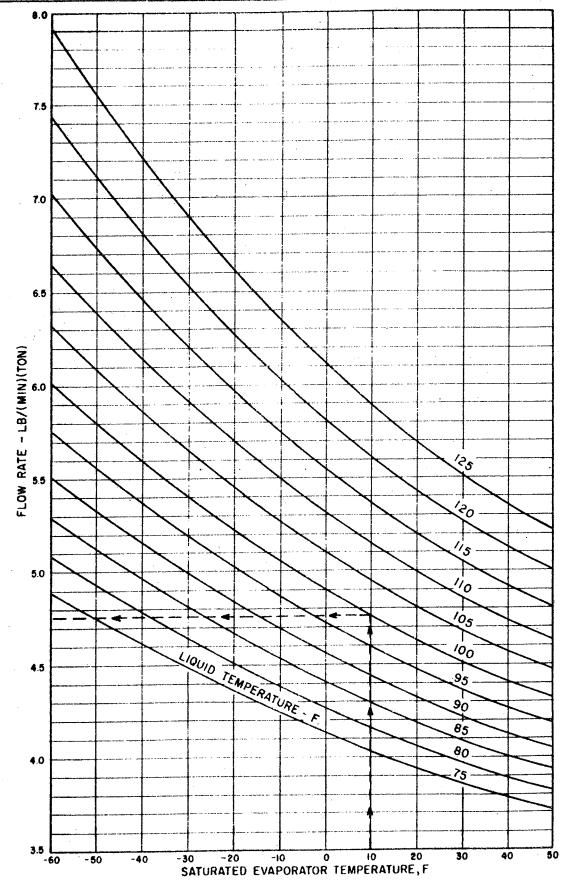
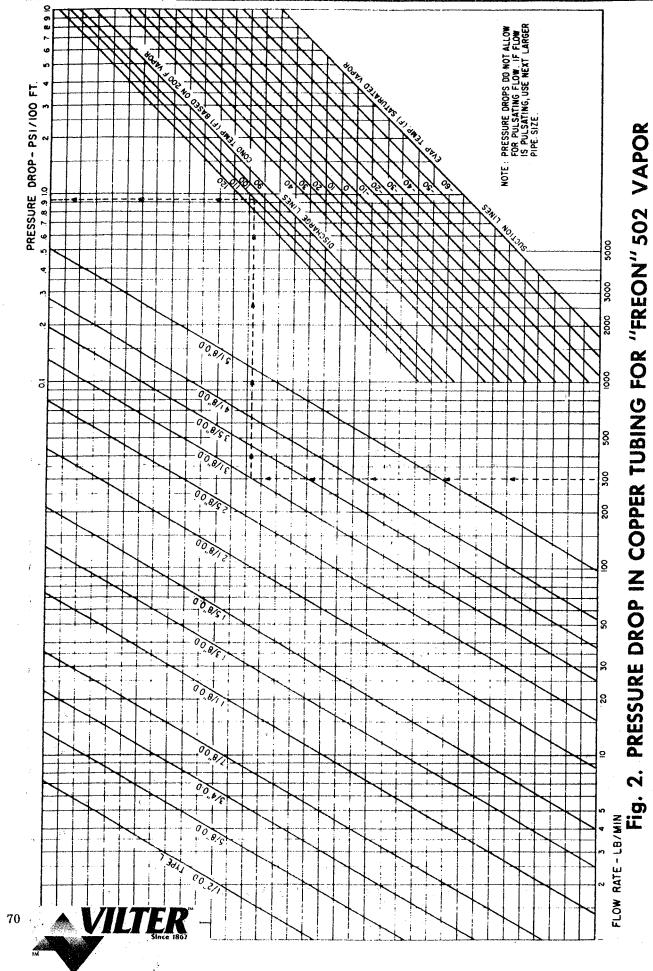
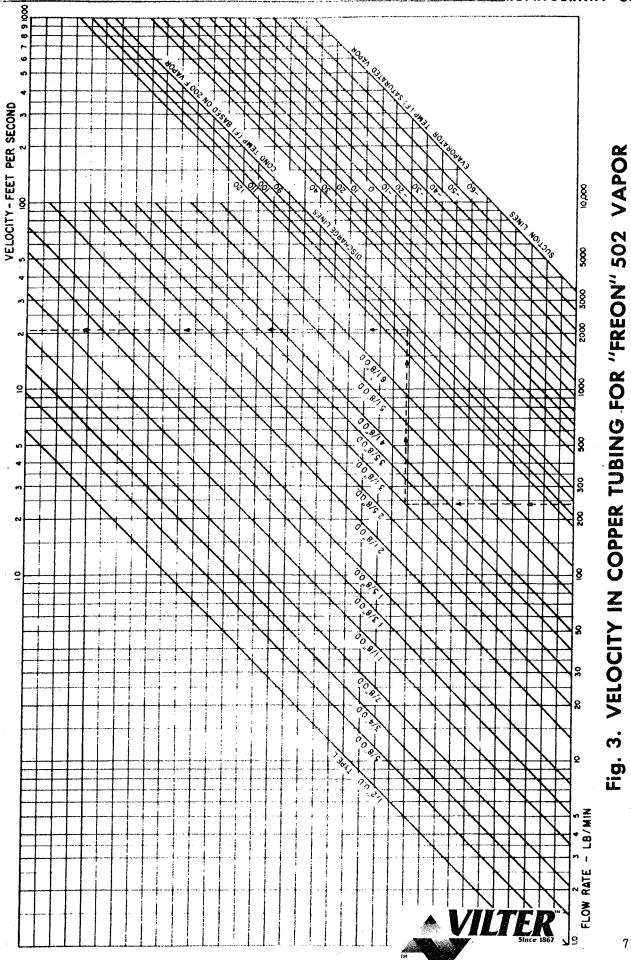




Fig. 1. FLOW RATE PER TON OF REFRIGERATION FOR "FREON" 502

VILTER

71

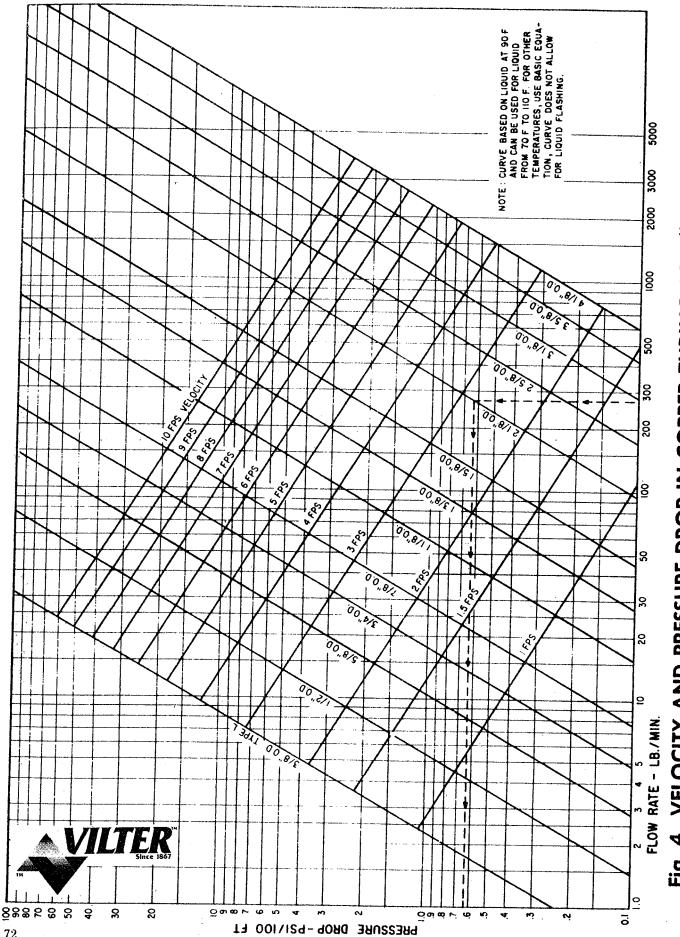


Fig. 4. VELOCITY AND PRESSURE DROP IN COPPER TUBING FOR "FREON" 502 LIQUID

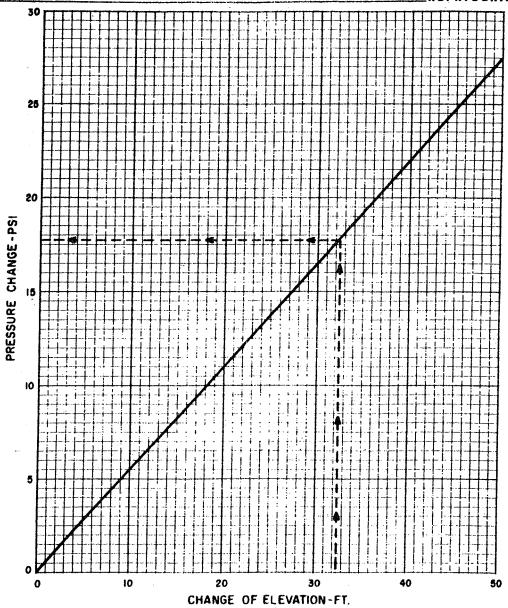


Fig. 5. RELATION OF PRESSURE-CHANGE TO ELEVATION-DIFFERENCE FOR "FREON" 502 LIQUID

TABLE 2
THERMODYNAMIC PROPERTIES OF REFRIGERANT 502

Temp		ure – r Sq. In.		me - per Lb.		sity – r Cu. Ft.		nthelpy - u per Li		Entro Btu per (1		Temp
t	Absolute P	T	Liquid V(Vapor ^V g	Liquid 1/v _f	Vapor 1/v _g	Liquid h _f	Latent h _{fg}	Vapor h _g	Liquid s _f	Vapor 8g	!
-80	6.278	17.14*	0.01036	5.8453	96.55	0.1711	-10.17	80.14	69.97	-0.0254	0.1857	-80
-75	7.318	15.02*	0.01041	5.0696	96.05	0.1973	-8.90	79.53	70.63	-0.0221	0.1846	-75
-70	8.490	12.63*	0.01047	4.4158	95.55	0.2265	~7.65	78.93	71.28	-0.0189	0.1837 0.1828	-70 -65
-65	9.806	9.96*	0.01052	3.8621	95.04	0.2589	-6.39	78.32	71.93	-0.0156 -0.0125	0.1828	-60
-60	11.28	6.96*	0.01058	3.3910	94.52	0.2949	-5.12	77.70	72.58	-0.0123	0.1019	1
-55	12.92	3.62*	0.01064	2.9884	94.00	0.3346	-3.85	77.08	73.23	-0.0093	0.1811	-55
-50	14.74	0.04	0.01070	2.6428	93.47	0.3784	~2.57	76.44	73.87	-0.0062	0.1804	-50
-45	16.75	2.06	0.01076	2.3451	92.94	0.4264	-1.29	75.81	74.52	-0.0031	0.1797	-45
-40	18.97	4.28	0.01082	2.0874	92.40	0.4791	0.00	75.16	75.16	0.0000	0.1791	-40
-38	19.92	5.23	0.01085	1.9942	92.18	0.5015	0.52	74.90	75.42	0.0012	0.1788	-38
-36	20.91	6.21	0.01087	1.9060	91.96	0.5247	1.03	74.64	75.67	0.0024	0.1786	-36
-34	21.93	7.24	0.01090	1.8226	91.74	0.5487	1.56	74,37	75.93	0.0037	0.1784	-34
-32	23.00	8.30	0.01093	1.7436	91.52	0.5735	2.07	74.11	76.18	0.0049	0.1781	-32
-30	24.10	9.40	0.01095	1.6687	91.30	0.5993	2.60	73.84	76.44	0.0061	0.1779	-30
-28	25.24	10.54	0.01098	1.5978	91.08	0.6259	3.12	73.57	76.69	0.0073	0.1777	-28
-26	26.42	11.72	0.01101	1.5305	90.85	0.6534	3.64	73.30	76.94	0.0085	0.1775	-26
-24	27.64	12.95	0.01103	1.4667	90.63	0.6818	4.16	73.03	77.19	0.0097	0.1773	-24
-22	28.91	14.21	0.01106	1.4061	90.40	0.7112	4.69	72.75	77.44	0.0109	0.1771	-22
-20	30.22	15.52	0.01109	1.3486	90.18	0.7415	5.21	72.48	77.69	0.0121	0.1769	-20
-18	31.57	16.88	0.01112	1.2939	89.95	0.7729	5.74	72.20	77.94	0.0133	0.1767	-18
-16	32.97	18,28	0.01115	1.2419	89.72	0.8052	6.27	71.92	78.19	0.0145	0.1766	-16
-14	34.42	19.72	0.01117	1.1925	89.49	0.8386	6.80	71.64	78.44	0.0156	0.1764	-14
-12	35.91	21.22	0.01120	1.1454	89,26	0.8731	7.33	71.36	78.69	0.0168	0.1762	-12
-10	37.46	22.76	0.01123	1.1006	89.02	0.9086	7.86	71.07	78.93	0.0180	0.1760	-10
-8	39.05	24.35	0.01126	1.0579	88.79	0.9453	8.40	70.78	79.18	0.0192	0.1759	-8
-6	40.69	26.00	0.01129	1.0172	88.55	0.9831	8.93	70.49	79.42	0.0204	0.1757	-6
-4	42.39	27.69	0.01123	0.9784	88.32	1.0220	9.47	70.20	79.67	0.0215	0.1756	-4
-2	44.14	29.44	0.01135	0.9414	88.08	1.0622	10.00	69.91	79.91	0.0227	0.1754	-2
ō	45.94	31.24	0.01138	0.9061	87.84	1.1036	10.54	69.61	80.15	0.0239	0.1753	0
2	47.79	33.10	0.01142	0.8724	87.60	1.1463	11.08	69.31	80.39	0.0250	0.1751	2
	49.71	35.01	0.01145	0.8402	87.36	1.1902	11.62	69.01	80.63	0.0262	0.1750	4
4 6	51.68	36.98	0.01143	0.8094	87.12	1.2354	12.16	68.70	80.86	0.0273	0.1749	6
8	53.70	39.01	0.01151	0.7800	86.88	1.2820	12.70	68.40	81.10	0.0285	0.1747	8
10	55.79	41.09	0.01154	0.7519	86.63	1.3300	13.25	68.08	81.33	0.0296	0.1746	10
12	57.94	43, 24	0.01158	0.7250	86.39	1.3793	13.80	67.77	81.57	0.0308	0.1745	12
	6014	45.45	0.01161	0.6992	86,14	1.4301	14.34	67, 46	81.80	0.0319	0.1743	14
14 16	60.14 62.41	45.45 47.72	0.01164	0.6746	85.89	1.4824	14.89	67.14	82.03	0.0331	0.1742	16
18	64.75	50.05	0.01168	0.6510	85.64	1.5362	15.44	66.82	82.26	0.0342	0.1741	18
20	67.14	52.45	0.01171	0.6283	85.39	1.5915	15.99	66.50	82.49	0.0354	0.1740	20
22	69.61	54.91	0.01175	0.6066	85.14	1.6485	16.54	66.17	82.71	0.0365	0.1739	22
	į		·		04 90	1.7070	17.10	65.84	82.94	0.0376	0.1738	24
24	72.13	57.44	0.01178 0.01182	0.5858 0.5659	84.88 84.63	1.7672	17.10	65.51	83.16	0.0378	0.1736	26
26.	74.73 77.40	60.04 62.70	0.01182	0.5467	84.37	1.8292	18.21	65.17	83.38	0.0399	0.1735	28
28 30	80.13	65.44	0.01189	0.5283	84.11	1.8928	18.76	64.84	83.60	0.0410	0.1734	30
32	82.94	68.24	0.01193	0.5106	83.85	1.9583	19.32	64.49	83.81	0.0422	0.1733	32
	i i	i	!		1	2.0256	19.88	64.15	84.03	0.0433	0.1732	34
34	85.82	71.12	0.01196 0.01200	0.4937 0.4774	83.59 83.33	2.0250	20.44	63.80	84.24	0.0444	0.1731	36
36	88.77 91.80	74.07 77.10	0.01200	0.4774	83.07	2.1659	21.01	63.44	84.45	0.0455	0.1730	38
38 40	91.80	80.20	0.01204	0.4466	82.80	2.2390	21.57	63.09	84.66	0.0466	0.1729	40
40	98.08	83.38	0.01212	0.4321	82.53	2.3142	22.14	62.73	84.87	0.0478	0.1728	42

^{*} Inches of mercury below one atmosphere.

TABLE 2 (Continued) THERMODYNAMIC PROPERTIES OF REFRIGERANT 502

Temp	Press Lb. per		Volu Cu. Ft.		Den Lb. per	sity r Cu. Ft.	Bt	nthalpy - u per Lb		Entrop Btu per (L	b.) (°R)	Temp. –
t	Absolute P	Gage P	Liquid V _f	Vapor v _g	Liquid l/v _f	Vapor i/v _g	Liquid h _f	Latent h _{fg}	Vapor h _g	Liquid s _f	Vapor S _g	t
4.4	101.3	86.64	0.01216	0.4182	82.26	2.3914	22.71	62.36	85.07	0.0489	0.1727	44
44 46	101.3	89.97	0.01220	0.4047	81.99	2.4708	23.28	61.99	85.27	0.0500	0.1726	46
40 48	108.1	93.39	0.01224	0.3918	81.72	2.5524	23.85	61.62	85.47	0.0511	0.1725	48
	111.6	96.89	0.01228	0.3793	81.44	2.6362	24.42	61.25	85.67	0.0522	0.1724	50
50	115.2	100.5	0.01232	0.3673	81.17	2.7224	25.00	60.87	85.87	0.0533	0.1723	52
52	113.2	100.5					25.50	60.48	86.06	0.0544	0.1722	54
54	118.8	104.1	0.01236	0.3557	80.89	2.8110	25.58 26.16	60.09	86.25	0.0555	0.1721	56
56	122.6	107.9	0.01241	0.3446	80.61	2.9020		59.70	86.43	0.0566	0.1720	58
58	126.4	111.7	0.01245	0.3338	80.33	2.9956	26.73	59.70	86.62	0.0578	0.1719	60
60	130.3	115.6	0.01249	0.3234	80.04	3.0918	27.32	58.89	86.80	0.0589	0.1717	62
62	134.3	119.6	0.01254	0.3134	79.76	3.1907	27.91	38.69				
- 4	138.4	123.7	0.01258	0.3037	79.47	3.2923	28.48	58.49	86.97	0.0600	0.1716	64
64	142.6	127.9	0.01263	0,2944	79.18	3.3968	29.08	58.07	87.15	0.0611	0.1715	66
66	142.0	132.2	0.01268	0.2854	78.88	3.5043	29.67	57.65	87.32	0.0622	0.1714	68
68	151.3	136.6	0.01272	0.2766	78.59	3.6147	30.25	57.23	87.48	0.0633	0.1713	70
70	155.8	141.1	0.01277	0.2682	78.29	3.7284	30.85	56.80	87.65	0.0644	0.1712	72
72	155.6	141.1	l	1	•		31.45	56.36	87.81	0.0655	0.1711	74
74	160.3	145.6	0.01282	0.2601	77.99	3.8452	31.45	55.92	87.96	0.0665	0.1709	76
76	165.0	150.3	0.01287	0.2522	77.68	3.9654	32.04	55.47	88.11	0.0676	0.1708	78
78	169.8	155.1	0.01292	0.2446	77.38	4.0890	32.64	55.02	88.26	0.0687	0.1707	80
80	174.6	159.9	0.01298	0.2372	77.07	4.2162	33.24	54.56	88.40	0.0698	0.1706	82
82	179.6	164.9	0.01303	0.2300	76.76	4:3471	33.84	34.30	88.40	ļ		İ
		170.0	0.01308	0.2231	76.44	4,4819	34.45	54.09	88.54	0.0709	0.1704	84
. 84 .	184.7	170.0 175.1	0.01314	0.2164	76.13	4.6206	35.06	53.62	88.68	0.0720	0.1703	86
86	189.8		0.01319	0.2099	75.80	4.7634	35.67	53.14	88.81	0.0731	0.1701	88
88	195.1	180.4	0.01314	0.2036	75.48	4,9105	36.28	52.65	88.93	0.0742	0.1700	90
90	200.5	185.8 191.3	0.01323	0.1976	75.15	5.0619	36.89	52.16	89.05	0,0753	0.1698	92
92	206.0	191.5	0.0.55	i	1			51.65	89.16	0.0764	0.1697	94
94	211.6	196.9	0.01337	0.1916	74.82	5.2180	37.51	51.05	89.27	0.0775	0.1695	96
96	217.3	202.6	0.01343	0.1859	74.48	5.3789	38.13	50.62	89.37	0.0786	0.1693	98
98	223.1	208.4	0.01349	0.1804	74.15	5.5447	38.75 39.37	50.02	89.47	0.0796	0.1692	100
100	229.1	214.4	0.01355	0.1750	73.80	5.7157	1	49.56	89.56	0.0807	0.1690	102
102	235.1	220.4	0.01361	0.1697	73.45	5.8921	40.00	49.30	1	1	l	i
444	241.3	226.6	0.01368	0.1646	73.10	6.0741	40.62	49.02	89.64	0.0818	0.1688	104
104	241.3 247.6	232.9	0.01375	0.1597	72.74	6,2620	41.25	48.47	89.72	0.0829	0.1686	106
106	254.0	239.3	0.01382	0.1549	72.38	6.4560	41.88	47.90	89.78	0.0840	0.1684	108
108	260.5	245.8	0.01389	0.1502	72.01	6.6564	42.52	47.33	89.85	0.0851	0.1682	110
110	267.1	252.4	0,01396	0.1457	71.64	6.8634	43.15	46.75	89.90	0.0862	0.1679	112
112	207.1		1	1		7 0775	43.79	46.15	89.94	0.0872	0.1677	114
114	273.9	259.2	0.01403	0.1413	71.26	7.0775	44.43	45.55	89.98	0.0883	0.1674	116
116	280.8	266.1	0.01411	0.1370	70.87		45.07	44.93	90.00	0.0894	0.1672	118
118	287.8	273.1	0.01419	0.1328	70.48	7.5279	45.71	44.31	90.02	0.0905	0.1669	120
120	295.0	280.3	0.01427	0.1288	70.08	7.7649	46.36	43.67	90.03	0.0916	0.1666	122
122	302.2	287.5	0.01435	0.1248	69.68	8.0105	1	1	1	i		124
	200.7	295.0	0.01444	0.1210	69.26	8,2648	47.00	43.02	90.02			
124	309.7	302.5	0.01453	0.1173	68.84	8.5285	47.65	42.36	90.01	0.0937	0.1660	126
126	317.2	310.2	0.01462	0.1136	68.41	8.8019	48.29	41.69	89.98	0.0948	0.1657	128
128	324.9	318.0	0.01471	0.1101	67.96	9.0855	48.95	41.00	89.95	0.0958	0.1654	130
130	332.7	325.9	0.01481	0.1066	67.51	9.3798	49.59	40.30	89.89	0.0969	0.1650	132
132	340.6	1	1	1		0.6054	50.24	39.59	89.83	0.0979	0.1646	134
134	348.7	334.0	0.01491	0.1032	67.05	9.6854	50.24	38.87	89.75	0.0990	0.1642	136
136	357.0	342.3	0.01502	0.09997	66.58	10.003	51.53	38.13	89.66	0.1000	0.1638	138
138	365.3	350.6	0.01513	0.09679	66.09		52.17	37.38	89.55		0.1634	140
140	373.8	359.1	0.01525	0.09368	65.59	10.674	34.1/	1 37.38	1 27.00			

APPENDIX

SECTION A-I

General Statement of Limitations and Assumptions

The charts and tables included in this manual contain the data necessary for proper selection of piping for refrigerating systems using Refrigerant 717 (ammonia), Refrigerant 12 (dichlorodifluoromethane), Refrigerant 22 (monochlorodifluoromethane) or Refrigerant 502 (Azeotrope of R-22 and R-115) over the range of capacities commonly used. In order that they should be applied correctly, the conditions of flow should meet the following requirements:

- 1. All pipe or tubing referred to is of circular cross-section and it is assumed that the fluid occupies the full cross-section.
- 2. The fluid is assumed to be all gas or all liquid. The only part of the piping in which a mixture of gas and liquid is considered is in the line between the expansion valve and the evaporator. This line is usually very short, and precise pressure-drop calculations are not normally of much value. A rough means of sizing is given

- in the "Refrigerant Piping Data" in the first portion of the section on each refrigerant.
- 3 It is assumed that the condition of the fluid does not change appreciably throughout the section being considered. If the change in temperature or pressure exceeds 10% to 15% of the initial absolute temperature or pressure, an intelligently selected average condition should be used. If there is a rather abrupt change of condition, the piping may be considered in separate sections before and after the point of abrupt change.
- 4. It is assumed that the rate of flow is reasonably steady. Pulsating flow will result in a greater resistance than if the same average rate occurs at a constant velocity. Normally, even with reciprocating compressors, the multi-cylinder type in current use reduces the pulsation to the point where its influence on pipe size is small or negligible.

SECTION A-II

Nomenclature

h = pressure loss (in feet of the particular fluid),
ft

f = friction factor (dimensionless)

L = length of pipe or tube, ft

L_e= equivalent length of pipe for same pressure loss as fitting, ft

D = diameter of pipe or tube, ft

V = velocity (in feet per second) fps

g = acceleration of gravity = 32.17 ft per (sec) (sec)

Re = Reynolds number = $\frac{DV_{\rho}}{\mu}$ (dimensionless)

 $\rho = \text{mass density of fluid in lb (mass) per cu ft}$

 μ = absolute viscosity of fluid, lb (mass) per (ft) (sec) = 0.000672 x centipoises

K = resistance coefficient for valve or fitting, expressed in velocity heads (dimensionless)

P == pressure loss (in lb per sq in), psi

SECTION A-III

General Equation for Pressure Drop in Pipe

The discussion which follows is applicable to all liquids, and approximately to gases, when the pressure drop is not more than 10 per cent of the initial absolute pressure. Changes in density of gases which result from larger drops in pressure introduce factors which will not be considered. This discussion, so far as it applies to fluids in general, is therefore subject to this limitation

Consider a straight pipe of internal diameter D in which fluid, of mass density ρ and viscosity μ , is flowing at a mean velocity V. Let the pressure loss in length L be denoted by h.

Certain general laws, based upon observation and experiment, appear to govern fluid friction in pipes and are expressed in all the generally accepted pipe formulas. These laws, briefly stated, are:

- 1. Frictional loss in turbulent flow generally increases with the roughness of the pipe. When the flow is laminar the frictional loss is independent of the roughness.
- 2. Frictional loss is directly proportional to the area of the wetted surface, or to πDL .

3. Frictional loss varies inversely as some power of the pipe diameter, or as ${\bf 1}$.

$$\overline{\mathbf{D}^{\mathbf{z}}}$$

- 4. Frictional loss varies as some power of the velocity or as V^n .
- 5. Frictional loss varies as some power of the ratio of viscosity to density of the fluid, or as $(\mu)^r$.

Over a period of years, the various values re-

quired for practical application were determined and the well-known pipe-flow formula, known as the Darcy-Weisbach formula, was obtained:

$$h = f \frac{L}{D} \frac{V^2}{2g} \tag{1}$$

where f is known as the "friction factor" and is dependent upon the roughness of the pipe surface, and the Reynolds number of the fluid,

$$\mathbf{Re} = \frac{\mathbf{DV}_{\rho}}{\mu}.$$

SECTION A-IV

The Moody Chart

Osborne Reynolds first showed that in pipes two distinct types of flow exist, namely, laminar or streamline flow, and turbulent flow. Furthermore, he found that laminar flow would change over to turbulent flow under certain conditions, with a drastic change in pressure-drop characteristics.

Laminar flow is characterized by parallel flow of all the fluid particles crossing any section of pipe. Experimentally, laminar flow ordinarily exists up to Re values of approximately 2000. For laminar flow the friction factor is practically independent of pipe roughness, and it can be shown both analytically and experimentally that

$$f = \frac{64}{Re}$$

Turbulent flow exists for values of Re above approximately 3000. It is characterized by flow in random directions within the pipe, with mixing constantly taking place between fast and slow moving portions of the fluid. No completely satisfactory analysis has been made of turbulent flow.

However, thousands of tests have resulted in

a rather complete determination of the relationship between friction factor, Reynolds number and pipe roughness. Moody has made an extensive correlation of much of the data. For turbulent flow, it is found experimentally that f is primarily dependent on the relative roughness, and that as Re increases, f tends to become constant for a given pipe roughness.

It is of paramount importance to note that a single graph applies to all fluids, both liquids and gases, all pipe sizes, and that separate friction data are not needed for each particular fluid.

In the range 2000 < Re < 3000 the flow may be either laminar or turbulent, and theoretical computations in this region may be subject to considerable error. Pipe-size selection should avoid this range, and the velocity ranges in the text provide for this, as well as other considerations.

The chart showing the relation of friction factor to Reynolds number and pipe roughness can be referred to in various places, including the ASRE Air Conditioning Refrigerating Data Book and the ASHRAE Heating, Ventilating and Air Conditioning Guide.

SECTION A-V

Losses in Valves and Fittings

"K" Factors: It is generally recognized that bends and fittings cause greater pressure losses than straight pipe of equal axial length. These excess losses, over and above skin friction, thus far have eluded rational evaluation. The most generally accepted method of computing the resistance to flow, caused by a valve or fitting, assumes the excess loss to be a direct function of the velocity head, and independent of the fric-

tion coefficient:

$$h = K \frac{V^2}{2g}$$
 (2)

where K is a proportionality constant, numerical values for which are commonly referred to as "K" factors, and V is the average velocity in the connecting pipe or tube of the same nominal size.

Values of K for valves and fittings are given in the tables in this booklet. Particularly for

valves, there is considerable variation in K values among different types and manufacture. If greater accuracy is desired, the manufacturer may be able to give a K value for his product.

Equation (2) may also be written:

$$P = K \frac{V^2 \rho}{(2g) 144} \tag{3}$$

The nomographs given in the text solve this equation for the various refrigerants.

Equivalent Length: Equation (2) is the generally accepted expression for indicating head loss caused by a valve or fitting. It assumes the head loss to be a direct function of the velocity head and independent of the friction coefficient. Also, the loss in straight pipe is as given in equation (1). Since h is the only term on one side of both equations (1) and (2),

$$f \frac{L}{D} \frac{V^2}{2g} = K \frac{V^2}{2g} \tag{4}$$

$$L = \frac{KD}{f} = L_e \tag{5}$$

The term L_e is known as the additional "equivalent length", which must be added to the actual straight pipe length to include the resistance of valves or fittings. The value shown in equation (5) for this term includes the friction coefficient. If the "K" value is constant for any given valve or fitting, then the equivalent length will vary with the friction factor, which in turn is a function of the Reynolds number. The equivalent lengths given have been calculated using Reynolds numbers applying to conditions normally used.

^a This assumption is not strictly justified in light of recent experiments, but "K" is essentially constant over a large range of Reynolds numbers, provided the flow is turbulent. "K" is also affected by the roughness of the pipe leading to and from the valve or fitting. In other words, a given valve installed in rough pipe would not necessarily have the same "K" value as if it were installed in smooth pipe. For practical problems, however, this effect can be neglected.

SECTION A-VI Bibliography

- Lapple, C. E., "Compressibility in Gas Flow Problems" Chemical Engineering, May, 1949
- 2. Bridge, T. E., "How to Design the Piping for Conveying Flashing Hot Water" *Heating*, *Piping and Air Conditioning*, March, April, May, 1949
- 3. Tube Turns Research Staff, "Fluid Flow in Pipe" Tube Turns, Inc., Piping Engineering Bulletin No. 3.01-1951
- 4. "Flow of Fluids Through Valves, Fittings, and Pipe" Crane Company Technical Papers: No. 409-1942, No. 410-1957
- 5. The Hydraulic Institute, "Pipe Friction Manual-1954"
- 6. "Bibliography on Flow of Flashing Mixtures" Tube Turns, Inc., Catalog 211, Page 262
- Daniels, C. M., "Pressure Losses in Flexible Metal Tubing" Product Engineering, April, 1956
- 8. Pigott, R. J. S., "Pressure Losses in Tubing, Pipes and Fittings" ASME Transactions 1950, p. 679
- 9. Rohwer, "Friction Losses in Selected Valves

- and Fittings" Colorado Agricultural Experiment Station Bulletin 41-1950
- Corp, "Experiments on Loss of Head in Valves and Pipes of One-Half to Twelve Inches Diameter" University of Wisconsin Bulletin Vol. IX No. 1-1922
- Lansford, "Loss of Head in Flow of Fluids Through Various Types of One and One-Half Inch Valves" University of Illinois, Bulletin 340-1943
- 12. Foster, D. E., "Effect of Fittings on Flow of Fluids Through Pipes, Including Chart for Flow of Steam in Pipes" ASME *Transactions* 1920 p. 647
- Moody, Lewis F., "Friction Factors for Pipe Flow" ASME Transactions Vol. 66, No. 8, November, 1944
- 14. Giesecke, F. E., and Badgett, W. H., "Loss of Head in Copper Pipe and Fittings" Heating, Piping and Air Conditioning, June, 1932
- 15. Reed, P. B., "Refrigerants", Chapter 7 Air Conditioning Refrigerating Data Book, 10th Edition, 1957-58 American Society of Refrigerating Engineers

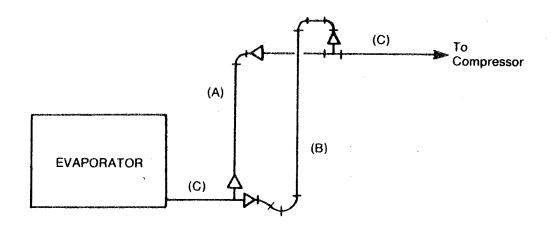
SECTION A-VII Suction and Hot Gas Risers

TABLE A-1. MINIMUM TONNAGE' FOR OIL ENTRAINMENT UP SUCTION RISERS (TYPE L COPPER TUBING)

	_						Pipe	OD					
Refriger-	Sat. Suction	1/2	*	1/4	7∕9	11/6	1 %	1 %	21/6	2%	31/4	3%	41/6
ant	Temp, F						Area,	Sq. In.					
		0.146	0.233	0.348	0.484	0.825	1.256	1.78	3.094	4.77	6.812	9.213	11.97
	40	0.061	0.110	0.182	0.27	0.54	0.91	1.4	2.79	4.78	7.49	10.9	15.1
	20	.077	.138	.228	.34	.67	1.13	1.75	3.49	5.99	9.36	13.7	19.0
R-12*	0	.093	.167	.278	.42	.82	1.38	2.14	4.26	7.32	11.4	16.6	23.2
	20 j	.112	.201	.332	.50	.97	1.65	2.55	5.1	8.73	13.6	19.9	27.6
	40	.132	.238	.390	.59	1.15	1.94	3.0	6.0	10.3	16.1	23.4	32.6
	40	0.09	0.16	0.27	0.41	0.79	1.34	2.1	4.1	7.1	11.1	16.1	22.4
	-20	.11	.20	.33	.50	.96	1.60	2.5	5.0	8.7	13.5	19.6	27.4
R-22*	0	.13	.24	.39	.59	1.2	1.96	3.0	6.1	10.4	16.2	23.6	32.8
1	20	16	.28	.46	.70	1.4	2.30	3.5	7.1	12.1	18.9	27.6	38.1
	40	18	.33	.54	.81	1.6	2.70	4.1	8.2	14.1	22.0	32.1	44.6
	60	0.053	0.10	0.16	0.24	0.46	0.78	1.2	2.4	4.1	6.4	9.4	13.0
	-40	.070	.12	.20	.30	.59	1.0	1.5	3.1	5.3	8.3	12.0	16.8
- 1	- 20	.084	. 15	.25	.38	.74	1.3	1.9	3.8	6.6	10.3	15.0	20.9
R-502†	0	.104	.19	.31	.47	.91	1.5	2.4	4.7	8.1	12.7	18.4	25.7
	20	.120	.22	.37	.56 j	1.1	1.8	2.9	5.7	9.8	15.2	22.2	30.8
	20 40	.146	. 26	.43	.65	1.3	2.2	3.3	6.7	11.4	17.8	26.0	36.1

^{*} Minimum tonnage values are based on the indicated saturation temperatures (SST) with 15 F deg of superheat and 90 F liquid temperature.

* R-12, R-22, reduce or increase table values 1% for 10 F deg less or more superheat.


† For R-502, reduce or increase table values 2% for 10 F deg less or more superheat.

For liquid temperatures other than 90 F, multiply the table values by the corresponding factor listed in the following table:

Liquid Temper	ature. F	50	60	70	80	90	100	110	120	130	140
Correction	1.20	i.15	1.10	1.05	1.00	0.95	0.90	0.85	0.80	0.75	
Factors	1.26	1.20	1.13	1.07	1.00	0.94	0.88	0.82	0.76	0.70	

DOUBLE SUCTION RISERS

To return oil in suction lines at reduced loads.

Description and Operation

- 1. The minimum load riser indicated by (A) is sized so that it returns oil at the minimum possible load.
- 2. The second riser (B), which is usually larger than riser (A), is sized so that the parallel pressure drop through both risers at full load is satisfactory providing this assures oil return at full load.
- 3. A trap is introduced between the two risers as shown. During partial load operation, when the gas velocity is not sufficient to return oil through both risers, the trap gradually fills with oil until the second riser (B) is sealed off. When this occurs, the gas travels up riser (A) only and has enough velocity to carry oil along with it back into the horizontal suction main.
- 4. The fittings at the bottom of the riser must be close coupled so that the oil flooding capacity of the trap is limited to a minimum. If this is not done, the trap can accumulate enough oil on partial load operation to seriously lower the crankcase oil level. Also, larger flood-backs of oil to the compressor occur when the trap clears out on increased load operation.
- 5. The larger riser (B) forms an inverted trap as it enters the top of the horizontal header. This prevents drainage into this line during periods when this line is "idle" due to minimum loads.
- 6. Risers (A) and (B) are to be sized using the minimum design velocities as described by ASHRAE for various refrigerants at the system design temperature.
- 7. The horizontal suction line (C) should be designed according to good suction line practice for minimum pressure drop while maintaining the proper velocity for oil return.

TABLE A-2. MINIMUM TONNAGE FOR OIL ENTRAINMENT UP HOT GAS RISERS (TYPE L COPPER TUBING)

Refriger- ont							Pip	OD					
_	Sat. Discharge	1/2	*	*	76	11/6	13%	1%	21/8	2%	31/6	3%	41/6
onf	Temp, F						Area,	Sq. In.					
		.146	.233	.348	.484	.825	1.256	1.78	3.094	4.77	6.812	9.213	11.97
	80	.17	.31	.50	.77	1.51	2.54	3.93	7.84	13.5	21.0	30.7	42.6
	90	.17	.31	.51	.77	1.51	2.54	3.92	7.84	13.5	21.0	30.7	42.6
	100	.17	.31	.51	.77	1.51	2.54	3.92	7.84	13.5	21.0	30.7	42.6
R-12*	110	.17	.31	.51	.77	1.50	2.53	3.90	7.81	13.4	20.9	30.5	42.2
	120	.17	.30	.50	.75	1.47	2.49	3:84	7.66	13.2	20.6	30.0	41.6
	130	.17	.30	.49	.72	1.45	2.44	3.77	7.54	12.9	20.3	29.4	40.8
•	140	.16	.28	.47	.71	1.38	2.33	3.61	7.20	12.4	19.4	28.2	39.9
	80	.23	.42	.69	1.04	2.0	3.4	5.3	10.6	18.2	28.3	41.5	57.5
	90	.23	.42	.69	1.04	2.0	3.4	5.3	10.6	18.2	28.2	41.3	57.3
	100	.23	.42	.69	1.03	2.0	3.4	5.3	10.5	18.0	28.1	41.0	56.7
R-22*	110	.23	.41	.67	1.02	2.0	3.4	5.2	10.4	17.9	27.9	40.8	56.5
	120	.22	.40	.66	1.00	2.0	3.3	5.1	10.2	17.5	27.4	39.9	55.4
	130	.22	.39	.64	.98	1.9	3.2	50	10.0	17.2	.26.8	39.0	54.0
	140	.21	.38	.63	.96	1.9	3.2	4.9	9.7	16.7	26.1	38.0	52.6
	80	.18	.32	.53	.80	1.55	2.7	4.1	8.2	14.1	21.9	32.5	44.3
	90	.17	.31	.51	.77	1.49	2.52	3.92	7.8	13.4	20.9	30.5	42.3
	100	165	.30	.50	.74	1.44	2.45	3.8	7.55	13.0	20.2	29.5	40.9
R-502†	110	160	.29	.48	.72	1.41	2.38	3.71	7.35	12.7	19.7	28.7	39.8
	120	.154	.28	.46	.69	1.33	2.26	3.52	7.0	12.4	18.7	27.3	37.9
	130	.145	.26	.43	.65	1.27	2.14	3.34	6.62	11.4	17.8	25.9	35.9
	140	.135	.24	.40	.61	1.18	1.98	3.08	6.15	10.6	16.4	24.0	33.3

[•] Minimum tonnages are based on a saturated suction temperature of +20 F with 15 F deg of superheat at the indicated saturated condensing temperatures with 15 F deg subcooling and actual discharge temperature based on 70% compressor efficiency. For suction temperatures other than 20 F, multiply the table values by the following factors:

SECTION A-VIII

LINE SIZING FOR LIQUID RECIRCULATION (OVERFEED) SYSTEMS

In the case of liquid recirculation systems, the sizing considerations for the liquid feed lines to the evaporators and the wet return lines to the low pressure receiver are different than conventional systems.

It is necessary to take the overfeed ratio into account to size the feed lines. The TR capacities for conventional liquid lines must be divided by the overfeed ratios in order to obtain the equivalent capacities for liquid feed lines. For example, for a 50 TR ammonia system having a 4 to 1 overfeed ratio, the line should be sized for $4 \times 50 = 200$ TR duty by normal sizing methods.

Several alternative design methods are used for wet return lines as suggested in Chapter 25 of the ASHRAE Systems Handbook. These are as follows:

- 1. Use one pipe size larger than indicated for the vapor flow alone.
- 2. Use a velocity selected for dry expansion reduced by the factor (circulating ratio) -0.5. This method suggests that the wet return velocity for a 4 to 1 rate of recirculation should be 0.5 that of the acceptable dry vapor velocity.
- 3. It is also possible to use the tables developed as a result of ASHRAE Research Project RP-107. The final report was made by Messrs. J.B. Chaddock, D.P. Werner and C.G. Papachristou.

When designing wet return lines in which vertical risers are incorporated, consideration should be given to the possibility of liquid holdup. In certain cases it may be necessary to incorporate different arrangements than are employed for conventional suction lines. For those applications where liquid holdup may be a possibility, it may be necessary to employ double risers to handle partial load conditions. Otherwise, it must be recognized that excessive pressure drops may be experienced if liquid holdups exist. In some cases it may be necessary to separate the liquid and transfer it by pumps.

It has been recognized that the conventional practices for estimating pressure drops thru valves and fittings do not apply for wet return connections. The geometry and position of the fittings can have an influence on the pressure drop thru these. Work is being done on this by various researchers, including ASHRAE RP-142 organized by Professor J.B. Chaddock at Duke University. Until more specific information is available, it is advisable to be conservative when selecting and sizing valves and fittings for wet return systems.

SECTION A-IX Miscellaneous Data

TABLE A-3. VISCOSITY OF REFRIGERANTS

			(µ in Cer	ntipoises) 1		
Temperature	Liquid	s at Saturation F	ressure		Vapors at 1 atmo	sphere
F	717	12	22	717	12	22
-40		0.423	0.351		0.0106	0.0105
-20		0.371	0.316		0.0109	0.0109
0		0.335	0.291	1	0.0113	0.0113
+5	0.250			0.0085		
20	0.240	0.308	0.271	0.0088	0.0116	0.0118
40	0.230	0.286	0.256	0.0093	0.0119	0.0122
60		0.269	0.243]	0.0123	0.0126
80	0.210	0.255	0.232		0.0126	0.0130
100	0.200	0.242	0.223	0.0105	0.0129	0.0133
120		0.232	0.214		0.0132	0.0137
140		0.222	0.207	1	0.0135	0.0141
150				0.0116		
160	İ	0.214	0.201		0.0138	0.0145
180		0.207	0.195	i i	0.0140	0.0148
200		0.200		1	0.0143	0.0152
220	1				0.0146	0.0156
240				1 . 1	0.0149	0.0159

Reprinted from 10th Edition, 1957-58, Air Conditioning Refrigerating Data Book, by courtesy of The American Society of Heating, Refrigerating and Air-Conditioning Engineers.

Table A-4. STEEL AND WROUGHT IRON PIPE-DIMENSIONS AND PHYSICAL DATA

		Diamet Inches					ansverse quare In			neal Fee juare Fo				Weig	tht Per
Size		In	ternal	of N	kness Jetal ches		Int	ternal			ernal ríace	Conta	l Feet ining 1 c Foot	Plair	oot Ends unds
inal S	rnal	Sch	edule	Sch	Schedule		Sch	edule	rnal	Sch	edule	Sche	edule	Sch	edule
Nominal Inches	External	40	80	40	- 80	External	40	80	External Surface	40	80	40	80	40	80
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.405 .540 .675 .840 1.050 1.315 1.660 1.900 2.375 2.875 3.500 4.000 4.500 5.563 6.625	.270 .364 .493 .622 .824 1.048 1.380 1.610 2.067 2.468 3.067 3.548 4.026 5.045 6.065	.215 .302 .423 .546 .742 .957 1.278 1.500 1.939 2.323 2.900 3.364 3.826 4.813 5.761	.068 .088 .091 .109 .113 .134 .140 .145 .154 .204 .217 .226				.036 .072 .141 .234 .433 .719 1.283 1.767 2.953 4.238 6.605 8.888 11.497 18.194 26.067	9.434 7.075 5.658 4.547 3.638 2.904 2.301 2.010 1.608 1.329 1.091 0.955 .849 .687	14.151 10.500 7.732 6.132 4.635 3.645 2.768 2.372 1.848 1.548 1.245 1.077 0.949 .757	17.766 12.648 9.030 6.995 5.147 3.991 2.988 2.546 1.969 1.644 1.317 1.135 0.998 .793 .663	2533.00 1383.28 754.32 473.84 270.02 167.25 96.26 70.73 42.91 30.34 19.51 14.57 11.31 7.20 4.98	2010.3 1024.7 615.0 333.02 200.2 112.25 81.48 48.76 33.97 21.80 16.20	1.678 2.272 2.717 3.652 5.793 7.575 9.109 10.790 14.617	.314 .535 .738 1.087 1.473 2.171 2.996 3.631 5.022 7.661 10.252 12.505 14.983 20.778 28.573
8 10	8.625 10.75	7.981 10.02	7.625 9.75	.322	.500	58.426	50.027	45.663 74.662	.443	.479	.500	2.87 1.83	3.154	28.554	43.388 54.735
12	12.75	12.00	11.75	.375		127.67	113.09	108.43	.300	.318	.325	1.27	1.328		65.415

Table A-5. COPPER, BRASS OR SEAMLESS-STEEL TUBING-DIMENSIONS AND PHYSICAL DATA1

Nominal Size OD	Туре	Internal Diameter	Thick- ness of Metal	A	sverse rea e Inches	Linea Per S Foot of	l Feet Iquare Surface	Lineal Feet Contain- ing 1	Lineal Feet Contain-	Lineal Feet Occupy- ing 1 Cubic	Weight Per Foot
Inches		Inches	Inches	External	Internal	External	Internal	Cu. Foot	ing 1 Gallon	Foot of Space	Pounds
1/4		.190	.030 3	.049	.028	15.25	20.00	5090.0	681.0	2940.0	.080
3/8	K	.311	.032 2	. 110	.076	10.45	12.29	1895.0	253.0	1310.0	.134
1/2	K L	. 402 . 430	.049 .035	.196	.127 .144	7.65	9.50 8.89	1135.0 1001.0	151.0 133.5	735.0	.269 .198
5/8	K L	.527 .545	.049 .040	.306	.218 .232	6.10	7.25 7.00	660.5 621.0	88.0 82.6	470.0	.344
3/4	K L	.652 .660	.049 .042	. 539	.333 .341	5.10	5.85 5.79	432.5 422.0	57.5 56.1	267.0	.418
7∕8	K L	.745 .785	.065 .045	.598	.435 .482	4.36	5.12 4.86	331.0 299.0	44.0 39.8	240.5	.641 .454
11/8	K L	.995 1.025	. 065 . 050	989	.775 .825	3.39	3.84 3.72	186.0 174.7	24.7 23.2	145.9	.839 .653
13/8	K L	1.245 1.265	.065 .055	1.481	1.215 1.255	2.78	3.06 3.02	118.9 115.0	15.8 15.3	97.3	1.040
15/8	K L	1.481 1.505	.072	2.070	1.725 1.771	2.35	2.57 2.54	83.5 81.4	11.1	69.6	1.36 1.14
21/8	K L	1.959 1.985	.083	3.540	3.000 3.090	1.80	1.95 1.92	48.0 46.6	6.39 6.20	40.6	2.06 1.75
25/8	K L	2.435 2.465	.095 .080	5.400	4.620 4.760	1.45	1.57 1.55	31.2 30.2	4.15 4.01	27.6	2.92 2.48
31/8	K L	2.907 2.945	.109	7.750	6.620 6.810	1.22	1.31 1.29	21.8 21.1	2.90 2.80	18.6	4.00 3.33
35/8	K L	3.385 3.425	.120 .100	10.350	8.96 9.21	1.05	1.13 1.11	16.1 15.6	2.14 2.07	13.9	5.12 4.29
41/8	K L	3.857 3.905	.134	13.320	11.62 11.92	.93	.99 .98	12.4 12.1	1.65	7.50	6.51 5.38
51/8	K L	4.805 4.875	.160 .125	20.530	18.10 18.60	.75	.79 .78	7.95 7.75	1.06	7.04	9.67 7.61
61/8	K L	5.741 5.845	.192 .140	29.400	25.80 26.61	.62	.67 .66	5.59 5.41	.74	4.90	13.87 10.20
81/8	K L	7.583 7.725	.271	51.700	44.80 46.60	.47	.50 .49	3.22 3.09	.43	2.78	25.90 19.29

¹ Conforms to ASA B-9 Code and ASTM Specifications B280-55T and B88-51. Conforms to ASA B-9 Code.

TABLE A-6.
RECEIVER TO CONDENSER EQUALIZING LINE SIZES

		,	COMPLETE	A PLIAT OF	LU	
Vent Line Size (Nominal Pipe Size) In.	1/2	3/4	1.	11/4	11/2	2
Max Tons—Refrigerant 12 & 502 Max Tons—Refrigerant 22 Max Tons—Refrigerant 717	35 50 50	70 90 100	120 150 176	200 260 310	280 360 425	460 590 650

TABLE A-7. LOW STAGE REFRIGERANT LINE CAPACITY MULTIPLIERS

Sal. Dis-	Ammonia	Refrige	erant 12	Refrige	rant 22
charge Temp, F	Discharge	Suction	Discharge	Suction	Discharge
-30 -20 -10 0 10 20 30	0.77 1.00 1.23 1.45 1.67	1.12 1.07 1.03 1.00 0.96 0.93 0.90	0.55 0.70 0.85 1.00 1.25 1.50 1.80	1.09 1.06 1.03 1.00 0.97 0.94 0.90	0.58 0.71 0.85 1.00 1.20 1.45 1.80

TABLE A-8. PRACTICAL GAS LINE VELOCITIES FOR VARIOUS REFRIGERANTS (fpm)

Refrigerant	Suction Line	Discharge Line
12, 22, 502	1,200-4,000	2,000-3,500
717 (Ammonia)	500-5,000	3,000-6,000

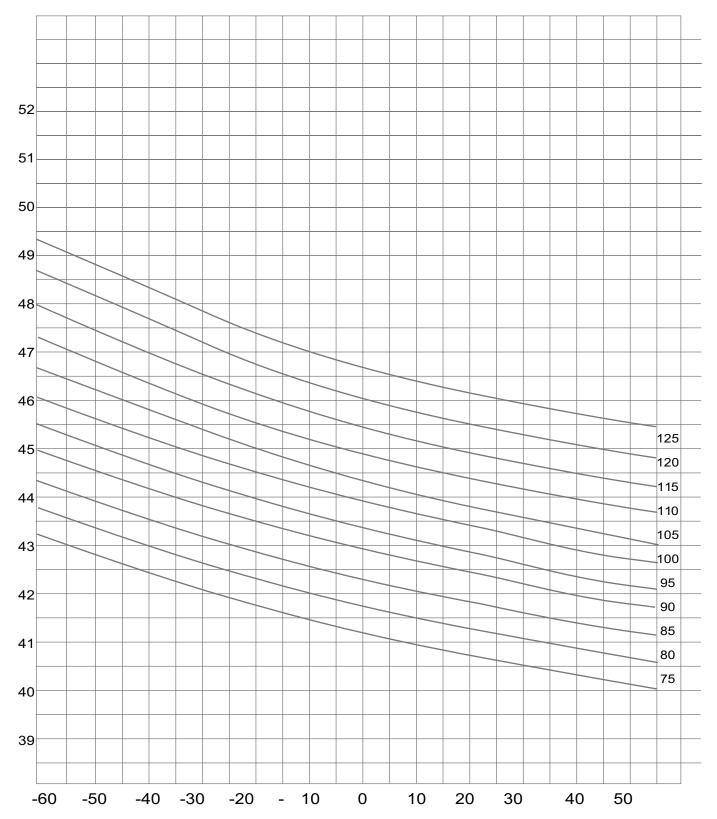
Velocities indicated are for system design load.

TABLE A-9. CONVERSION TABLE FOR FAHRENHEIT AND CENTIGRADE

		Fehr.	Cent.	Temp.	Fehr.	Cent.	Temp.	Fahr.	Cent.	Temp.	Fahr.	Cent.	Temp.	Fahr.
Cent.	Temp.			-21	-5.8	-4.44	24	75.2	20.0	68	154.4	44.5	112	233.6
-73.2	-100	-148.0	-29.3 -28.8	-20	-4.0	-3.89	25	77.0	20.6	69	156.2	45.1	113	235.4
-67.6	-90	-130.0	-28.2	-19	-2.2	-3.33	26	78.8	21.1	70	158.0	45.6	114	237.2
-62.1	-80	-112.0	-27.7	-18	-0.4	-2.78	27	80.6	21.7	71	159.8	46,2	115	239.0
-59.3	-75	-103.0	-27.1	-17	1.4	-2.22	28	82.4	22.2	72	161.6	46.7	116	240.8
-56.5	-70	-94.0		1	1	í	29	84.2	22.8	73	163.4	47.3	117	242.6
-53.7	-65	-85.0	-26.5	-16	3.2	-1.67 -1.11	30	86.0	23.3	74	165.2	47.8	118	244.4
-51.0	-60	-76.0	-26.0	-15	5.0 6.8	-0.56	31	87.8	23.9	75	167.0	48.4	119	246.2
-50.4	-59	-74.2	-25.4 -24.9	-14 -13	8.6	0.50	32	89.6	24.4	76	168.8	48.9	120	248.0
-49.9	-58	-72.4	-24.3	-12	10.4	0.56	33	91.4	25.0	77	170.6	49.5	121	249.8
-49.3	-57	-70.6					i	93.2	25.6	78	172.4	50.1	122	251.6
~48.7	-56	-68.8	-23.8	-11	12.2	1.11	34 35	95.0	26.1	79	174.2	50,6	123	253.4
-48.2	-55	-67.0	-23.2	-10	14.0	1.67	36	96.8	26.7	80	176.0	51.2	124	255.2
-47.6	-54	-65.2	-22.7	-9	15.8	2.22 2.78	37	98.6	27.2	81	177.8	51.7	125	257.0
-47.1	-53	-63.4	-22.1	-8	17.6	3.33	38	100.4	27.8	82	179.6	52.3	126	258.8
-46.5	-52	-61.6	-21.5	-7	19.4	1				ŀ	181.4	52.8	127	260.6
-46.0	-51	~59.8	-21.0	-6	21.2	3.89	39	102.2	28.3	83		53.4	128	262.4
-45.4	-50	-58.0	-20.4	-s	23.0	4.44	40	104.0	28.9	84 85	183.2 185.0	53.9	129	264.2
-44.9	-49	-56.2	-19.9	-4	24.8	5.00	41	105.8	29.4	86	186.8	54.0	130	266.0
-44.3	-48	-54.4	-19.3	-3	26.6	5.56	42	107.6 109.4	30.0 30.6	87	188.6	57.3	135	275.0
-43.7	-47	-52.6	-18.8	-2	28.4	6.11	43		i	1				ĺ
-43.2	-46	-50.8	-18.3	-1	30.2	6.67	44	111.2	31.1	88	190.4	60.0	140	284.0 293.0
-42.6	-45	~49.0	-17.8	0	32.0	7.22	45	113.0	31.7	89	192.2	62.8	145	302.0
-42.1	-44	-47.2	-17.2	1	33.8	7.78	46	114.8	32.2	90	194.0	66.0	150 155	311.0
-41.5	-43	-45.4	-16.7	2	35.6	8.33	47	116.6	32.8	91	195.8	68.4	160	320.0
-41.0	-42	-43.6	-16.1	3	37.4	8.89	48	118.4	33,3	92	197.6	71.0		l
	-41	-41.8	-15.6	4	39.2	9.44	49	120.2	33.9	93	199.4	73.9	165	329.0
-40.4 -40.0	-40	-40.0	-15.0	5	41.0	10.0	50	122.0	34.4	94	201.2	77.0	170	338.0
-39.3	-39	-38.2	-14.4	6	42.8	10.6	51	123.8	35.0	95	203.0	79.5	175	347.0
-39.3	-38	-36.4	-13.9	7	44.6	11.1	52	125.6	35.6	96	204.8	82.0	180	356.0
-38.2	-37	-34.6	-13.3	8	46.4	11.7	53	127.4	36.1	97	206.6	85.0	185	365.0
		, ,	-12.8		48.2	12.2	54	129.2	36.7	98	208.4	88.0	190	374.0
-37.6	-36	-32.8 -31.0	-12.2	ıó	50.0	12.8	55	131.0	37.2	99	210.2	90.6	195	383.0
-37.1	-35	-29.2	-11.7	ii	51.8	13.3	56	132.8	37.8	100	212.0	93.0	200	392.0
-36.5	-34 -33	-27.4	-11.1	12	53.6	13.9	57	134.6	38.4	101	213.8	99.0	210	410.0
-36.0 -35.4	-32	-25.6	-10.6	13	55.4	14.4	58	136.4	39.0	102	215.6	100.0	212	413.0
	Į.		-10.0	14	57.2	15.0	59	138.2	39.5	103	217.4	104.0	220	428.0
-34.9	-31	-23.8	-9.44	15	59.0	15.6	60	140.0	40.1	104	219.2	110.0	230	446.0
-34.3	-30	-22.0 -20.2	-8.89	16	60.8	16.1	61	141.8	40.6	105	221.0	116.0	240	464.0
-33.8	-29	-18.4	-8.33	17	62.6	16.7	62	143.6	41.2	106	222.8	121.0	250	482.0
-33.2 -32.6	-28 -27	-16.6	-7.78	is	64.4	17.2	63	145.4	41.7	107	224.6	127.0	260	500.0
					66.2	17.8	64	1.47.2	42.3	108	226.4	132.0	270	518.0
-32.1	-26	-14.8	-7.22 -5.67	19 20	68.0	18.3	65	149.0	42.8	109	228.2	138,0	280	536.0
-31.5	-25	-13.0	-6.67 -6.11	21	69.8	18.9	66	150.8	43.4	110	230.0	143.0	298	554.0
-31.0	- 24	-11.2 -9.4	-5.56	22	71.6	19.4	67	152,6	43.9	111	231.8	149.0	300	572.0
-30.4	-23	-7.6	-5.00	23	73.4	• • • • •			l	l		L	<u> </u>	
-29.9	-22	-7.0	3.00					· · · · · · · · · · · · · · · · · · ·			do on Bak		hick one	desires to

The numbers in the TEMPERATURE column (center column) refer to the temperature either in Centigrade or Fahrenheit, which one desires to convert to the other scale. If converting Fahrenheit to Centigrade, the equivalent temperature will be found in the CENTIGRADE column (right column). If converting Centigrade to Fahrenheit, the equivalent temperature will be found in the FAHRENHEIT column (right column).

TABLE A-10. FLOW OF WATER THROUGH SCHEDULE 40 STEEL PIPE


educative visitation			PRESS	UKE D	ROP P	ER 100	FEET	AND V	ELOCIT	Y IN S	CHEDU	LE 40	PIPE F	OR WA	TER A	T 60°F.	
DISCHARGE		Veloc	- Press.	Ye loc-	Press	Veloc-	Press.	Veloc-	Press.	Veloc-		Veloc-		Veloc-		Veloc- ity	Press.
Gallon	Cubic Ft	Feet	Drop Lbs.	Feet	Drop Lbs.	Feet	Drop Lbs.	Feet	Drop	Feet	Lbs.	Feet	Lbs	Feet	Lbs	Feet	Lbs
per	per	per	per d Sq. In.	per	per Sa.In.	per Second	per Sa. In.	per Second	per Sa. In.	per Second	per Sq.In.	per Second	per Sq.In.	per Second	per Sq. In.	per Second	per Sq.In.
Minute	360010		1/11	-	جار بسمت بعدد	-		_	ع جنب بسند سوري					_			
.2 .3 .4 .5 .6		1.13	1.86 4.22 6.98 10.5 14.7 25.0	0.616 0.924 1.23 1.54 1.85 2.46		1	0.159 0.345 0.539 0.751 1.25	0.317 0.422	0.061 0.086 0.167 0.240 0.408	0.301	0.033 0.041 0.102	1	ar .	11.	/ II		
1 2 3 4 5	0.00223 0.00446 0.00668 0.00891 0.01114	5.65 11.29		3.08 6.16 9.25 12.33	8.28 30.1 64.1 111.2	1.68 3.36 5.04 6.72 8.40	1.85 6.58 13.9 23.9 36.7	1.06 2.11 3.17 4.22 5.28	0.600 2.10 4.33 7.42 11.2	0.602 1.20 1.81 2.41 3.01	0.155 0.526 1.09 1.83 2.75	0.371 0.743 1.114 1.49 1.86	0.048 0.164 0.336 0.565 0.835	0.429 0.644 0.858 1.073	0.044 0.090 0.150 0.223	0.473 0.630 0.788	0.043 0.071 0.104
6 8 10 15 20	0.01337 0.01782 0.02228 0.03342 0.04456	0.574 0.765 0.956 1.43 1.91	0.073 0.108 0.224 0.375	0.670 1.01 1.34	0.094 0.158	0.868	51.9 91.1 " 0.056	31	15.8 27.7 42.4	3.61 4.81 6.02 9.03 12.03	3.84 6.60 9.99 21.6 37.8	2.23 2.97 3.71 5.57 7.43	1.17 1.99 2.99 6.36 10.9	1.29 1.72 2.15 3.22 4.29	0.309 0.518 0.774 1.63 2.78	0.946 1.26 1.58 2.37 3.16	0.145 0.241 0.361 0.755 1.28
25 30 35 40 45	0.05570 0.06684 0.07798 0.08912 0.1003	2.39 2.87 3.35 3.83 4.30	0.561 0.786 1.05 1.35 1.67	1.68 2.01 2.35 2.68 3.02	0.234 0.327 0.436 0.556 0.668	1.52	0.083 0.114 0.151 0.192 0.239	0.812 0.974 1.14 1.30 1.46	0.041 0.056 0.074 0.095 0.117	0.882 1.01 1.13	0.052 0.064	9.28 11.14 12.99 14.85	16.7 23.8 32.2 41.5	9.67	4.22 5.92 7.90 10.24 12.80	3.94 4.73 5.52 6.30 7.09	1.93 2.72 3.64 4.65 5.85 7.15
50 60 70 80 90	0.1114 0.1337 0.1560 0.1782 0.2005	4.78 5.74 6.70 7.65 8.60	2.03 2.87 3.84 4.97 6.20	3.35 4.02 4.69 5.36 6.03	0.839 1.18 1.59 2.03 2.83	2.17 2.60 3.04 3.47 3.91	0.288 0.406 0.540 0.687 0.861	1.62 1.95 2.27 2.60 2.92	0.142 0.204 0.261 0.334 0.416	1.26 1.51 1.76 2.02 2.27	0.076 0.107 0.143 0.180 0.224	1.12 1.28 1.44	0.047 0.060 0.074	12.89 6 "	15.66	12.62 14.20	10.21 13.71 17.59 22.0
100 125 150 175 200	0.2228 0.2785 0.3342 0.3899 0.4456	9.56 11.97 14.36 16.75 19.14	7.59 11.76 16.70 22.3 28.8	6.70 8.38 10.05 11.73 13.42	3.09 4.71 6.69 8.97 11.68	4.34 5.43 6.51 7.60 8.68	1.05 1.61 2.24 3.00 3.87	3.25 4.06 4.87 5.68 6.49	0.509 0.769 1.08 1.44 1.85	2.52 3.15 3.78 4.41 5.04	0.272 0.415 0.580 0.774 0.985	1.60 2.01 2.41 2.81 3.21	0.090 0.135 0.190 0.253 0.323	1.11 1.39 1.67 1.94 2.22	0.055 0.077 0.102 0.130	!	26.9 41.4
225 250 275 300 325	0.5013 0.557 0.6127 0.6684 0.7241	:::		15.09	14.63	9.77 10.85 11.94 13.00 14.12	4.83 5.93 7.14 8.36 9.89	7.30 8.12 8.93 9.74 10.53	2.32 2.84 3.40 4.02 4.09	5.67 6.30 6.93 7.56 8.19	1.23 1.46 1.79 2.11 2.47	3.61 4.01 4.41 4.81 5.21	0.401 0.495 0.583 0.683 0.797	2.50 2.78 3.05 3.33 3.61	0.162 0.195 0.234 0.275 0.320	1.44 1.60 1.76 1.92 2.08	0.043 0.051 0.061 0.072 0.083
350 375 400 425 450	0.7798 0.8355 0.8912 0.9469 1.003	1	0"	:::		:::		11.36 12.17 12.98 13.80 14.61	5.41 6.18 7.03 7.89 8.80	8.82 9.45 10.08 10.71 11.34	2.84 3.25 3.68 4.12 4.60	5.62 6.02 6.42 6.82 7.22	0.919 1.05 1.19 1.33 1.48	3.89 4.16 4.44 4.72 5.00	0.367 0.416 0.471 0.529 0.590	2.24 2.40 2.56 2.73 2.89	0.095 0.108 0.121 0.136 0.151
475 500 550 600 650	1.059 1.114 1.225 1.337 1.448	1.93 2.03 2.24 2.44 2.64	0.054 0.059 0.071 0.083 0.097	12	<u>}</u> "				:::	11.97 12.60 13.85 15.12	5.12 5.65 6.79 8.04	7.62 8.02 8.82 9.63 10.43	1.64 1.81 2.17 2.55 2.98	5.27 5.55 6.11 6.66 7.22	0.653 0.720 0.861 1.02 1.18	3.04 3.21 3.53 3.85 4.17	0.166 0.182 0.219 0.258 0.301
700 750 800 850 900	1.560 1.671 1.782 1.894 2.005	2.85 3.05 3.25 3.46 3.66	0.112 0.127 0.143 0.160 0.179	2.01 2.15 2.29 2.44 2.58	0.047 0.054 0.061 0.068 0.075	2.02 2.13	0.042 0.047		:::			11.23 12.03 12.83 13.64 14.44	3.43 3.92 4.43 5.00 5.58	7.78 8.33 8.88 9.44 9.99	1.35 1.55 1.75 1.96 2.18	4.49 4.81 5.13 5.45 5.77	0.343 0.392 0.443 0.497 0.554
950 1,000 1,100 1,200 1,300	2.117 2.228 2.451 2.674 2,896	3.86 4.07 4.48 4.88 5.29	0.198 0.218 0.260 0.306 0.355	2.72 2.87 3.15 3.44 3.73	0.083 0.091 0.110 0.128 0.150	2.25 2.37 2.61 2.85 3.08	0.052 0.057 0.068 0.080 0.093	16 2.18 2.36	0.042 0.048		:::	15.24 16.04 17.65	8.23 	1 0.55 11 .10 12.22 13 .33 14 .43	2.42 2.68 3.22 3.81 4.45	6.09 6.41 7.05 7.70 8.33	0.613 0.675 0.807 0.948 1.11
1,400 1,500 1,600 1,800 2,000	3.119 3.342 3.565 4.010 4,456	5.70 6.10 6.51 7.32 8.14	0.409 0.466 0.527 0.663 0.808	4.01 4.30 4.59 5.16 5.73	0.171 0.195 0.219 0.276 0.339	3.32 3.56 3.79 4.27 4.74	0.107 0.122 0.138 0.172 0.209	2.54 2.72 2.90 3.27 3.63	0.055 0.063 0.071 0.088 0.107	2.58 2.87	0.050 0.060	- 20		15.55 16.66 17.77 19.99 22.21		8.98 9.62 10.26 11.54 12.82	1 .28 1 .46 1 .65 2 .08 2 .55
2,500 3,000 3,500 4,000 4,500	7.798 8.912	10.17 12.20 14.24 16.27 18.31	3.08	7.17 8.60 10.03 11.47 12.90	0.515 0.731 0.982 1.27 1.60	5.93 7.11 8.30 9.48 10.67	0.321 0.451 0.607 0.787 0.990	4.54 5.45 6.35 7.26 8.17	0.163 0.232 0.312 0.401 0.503	3.59 4.30 5.02 5.74 6.46	0.091 0.129 0.173 0.222 0.280	3.46 4.04 4.62 5.20	0.075 0.101 0.129 0.162	3.19 3.59	0.052 0.065		3.94 5.59 7.56 9.80 12.2
6,000 7,000 8,000		20.35 24.41 28.49	6.74 9.11	14.33 17.20 20.07 22.93 25.79	2.77 3.74 4.84	11.85 14.23 16.60 18.96 21.34	2.31	.9.08 10.89 12.71 14.52 16.34	1.90	11.47 12.91	0.340 0.483 0.652 0.839 1.05		0.199 0.280 0.376 0.488 0.608	3.99 4.79 5.59 6.38 7.18	0.079 0.111 0.150 0.192 0.242		
2,000 4,000 6,000 8,000	22.28 26.74 31.19 35.65 40.10 44.56			28.66 34.40 	10.7	23.71 28.45 33.19	6.59 8.89	18.15 21.79 25.42 29.05 32.68 36.31	3.33 4.49 5.83 7.31	14.34 17.21 20.08 22.95 25.82 28.69	1.83 2.45 3.18 4.03	11.54 13.85 16.16 18.47 20.77 23.08	1.85	7.98 9.58 11.17 12.77 14.36 15.96	0.294 0.416 0.562 0.723 0.907 1.12		

For pipe lengths other than 100 feet, the pressure drop is proportional to the length. Thus, for 50 feet of pipe, the pressure drop is approximately one-half the value given in the table...for 300 feet, three times the given value, etc.

Velocity is a function of the cross sectional flow area; thus, it is constant for a given flow rate and is independent of pipe length.

TYPICAL CONVERSION FACTORS (U.S. TO S.I. METRIC)

CONVENTIONAL U. S. UNIT	MULTIPLIED BY CONVERSION FACTOR	GIVES S. I. METRIC	METRIC UNIT
inch	25.40	millimetres	mm
inch	2.54	centimetres	cm
feet	0.3048	metres	m
square feet	0.0929	square metres	m²
cubic feet	0.02832	cubic metres	m,
microns (of Hg)	0.133322	pascals (equivalent to newtons	Pa
pound	0.453592	per square metre)	N/m²
pounds of force	4.448	kilograms	kg
pounds of force	4.440	newtons	N
per square inch (p.s.i.)	6.895	kilopascals	kPa
short ton	0.9091	metric tons	t
galion	3.785	litres	1
gallon	0.003785	cubic metres	w ₁
gallons per minute (g.p.m.) gallons per minute	0.06308	litres per second	I/s
(g.p.m.)	0.00006309	cubic metres per second	m³/s
horsepower (hp)	746.0	watts	W
horsepower (hp)	0.7460	kilowatts	kW
tons of refrigeration	3.5168	kilowatts	kW
revolutions per			
minute (r.p.m.)	0.104720	radians per second	rad/s
British thermal			
units (Btu)	1,055.0	joules	j
Btu's per pound	2.326	kitojoules per	
convection coefficient		kilogram	kJ/kg
and u-value		watts ÷ (square	
(Btu/(hr x ft²x°F.)	5.678286	metres x degrees kelvin)	
temperature level (°F.)	x5/9 (after	KGIVIII)	W/(m²·K)
	subtracting 32)	degrees celsius	* C
temperature difference (°F. delta T)	0.555		_
acres (plant site area)	0.555 0.4047	degrees kelvin	deg K
Btu's per hour		hectares (10,000 m²)	ha
density (lb./ft³)	0.293067 16.0185	watts	W [.]
The state of the s	10.0100	kilograms per cubic metre	tra/m3
feet per second	0.3048	meters per	kg/m³
		second	m/s

VILTER

5555 S Packard Ave Cudahy, WI 53110 414-744-0111