

Meeting Future Refrigeration Energy Regulations With Today's Technology Alternatives

March 17, 2015

Presented By:

Kurt Knapke

Vice President of Engineering and Electronics Emerson Climate Technologies

Brian Buynacek, PE, LEED AP

Refrigeration Engineer Emerson Climate Technologies

Commercial Refrigeration Equipment

- Effective March 27, 2017
 on New Equipment
- Commercial Ref. Equipment Measured in kWh/24-Hour Day
 - Each Equipment Class Assigned Equation
 - Variable: Total Display Area (TDA) or Volume

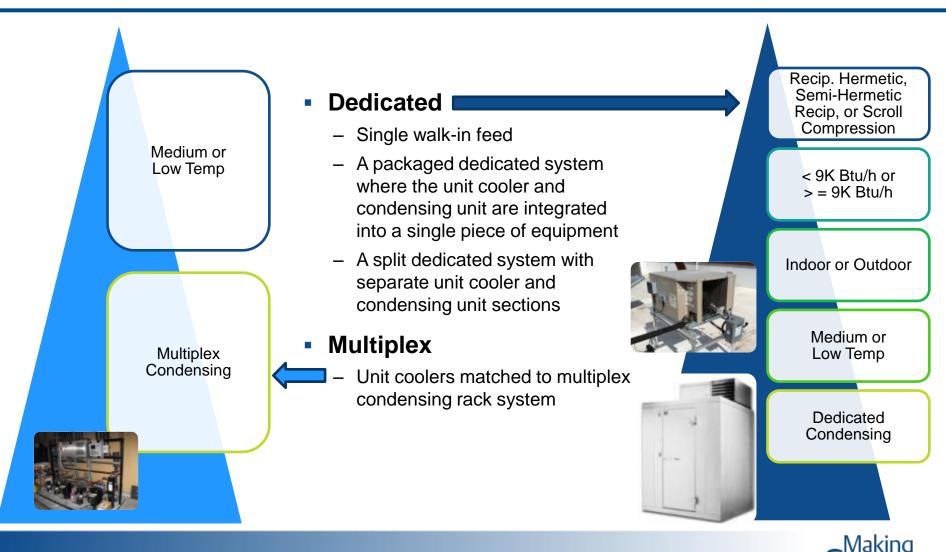
Walk-In Coolers and Freezers

- Effective June 5, 2017 on New Components
- Walk-In Coolers and Freezers Measured in Three Major Components: AWEF, MEC, R-Value Panels
- AWEF Measured Using AHRI-1250 Testing Standard
 - Each Equipment Class Assigned Equation
 - Variable: Q = System Capacity

Automatic Commercial Ice Makers

- Effective January 1, 2018 on New Equipment
- Automatic Commercial Ice Makers Measured in kWh/100 lbs Ice
 - Each Equipment Class
 Assigned Equation
 - Variable: H = Harvest Rate in lbs per 24 Hours

Commercial Refrigeration Equipment (CRE)


Equipment Classes

Walk-In Coolers and Freezers (WICF)

Equipment Classes

Automatic Commercial Ice Makers (ACIM)

Equipment Classes

- Affecting Batch Ice Machines, Also Known as "Cubers"
- Affecting Continuous Ice Machines, Also Known as "Flakers" or "Nuggets"

Frozen Carbonated Beverage Machines Not Affected

Regulations Overview

Operating Condition Summary

Equipment Image: Constraint of the second second

Ice Cream = -15 °F

- Ambient: 75 °F
- Evap, Return Gas, Sub-Cooling, Defrosts Are Dependent on System Performance

Commercial Refrigeration

• AHRI — 1200

Walk-In Coolers and Freezers

- Evap: Cooler = 23 °F Freezer = -22 °F
- Ambient: Indoor = 90 °F
 Outdoor = 35 °F/59 °F/95 °F
- Return Gas: Cooler = 41 °F Freezer = 5 °F
- Sub-Cooling: 5 °F
- Defrost: Frequency, Electric vs. Hot Gas, Non-Adaptive vs. Adaptive
- AHRI 1250

Automatic Commercial Ice Makers

- Ambient: 90 °F
- Water: 70 °F
- Evap, Return Gas, Sub-Cooling, Are Dependent on System Performance
- AHRI 810

Equipment Regulations Compliance

Commercial Refrigeration Equipment	 New Commercial Refrigeration Equipment Post Date of Mfg. March 27, 2017 Replacement Equipment Can Be Non-Compliant if Mfg. Before March 27, 2017
Walk-In Coolers and Freezers	 New & Service Components (Unit Coolers, Panels, Doors) Post Mfg. June 5, 2017 Refrigeration Equipment Does Not Need to Be Replaced for Compliance When Serviced After June 5, 2017 Replacement Equipment Can Be Non-Compliant if Mfg. Prior to June 5, 2017
Automatic Commercial Ice Makers	 New ACIM Equipment Post Date of Mfg. January 1, 2018 Replacement Equipment Can Be Non-Compliant if Mfg. Before March 27, 2017

DOE Impact to Channel

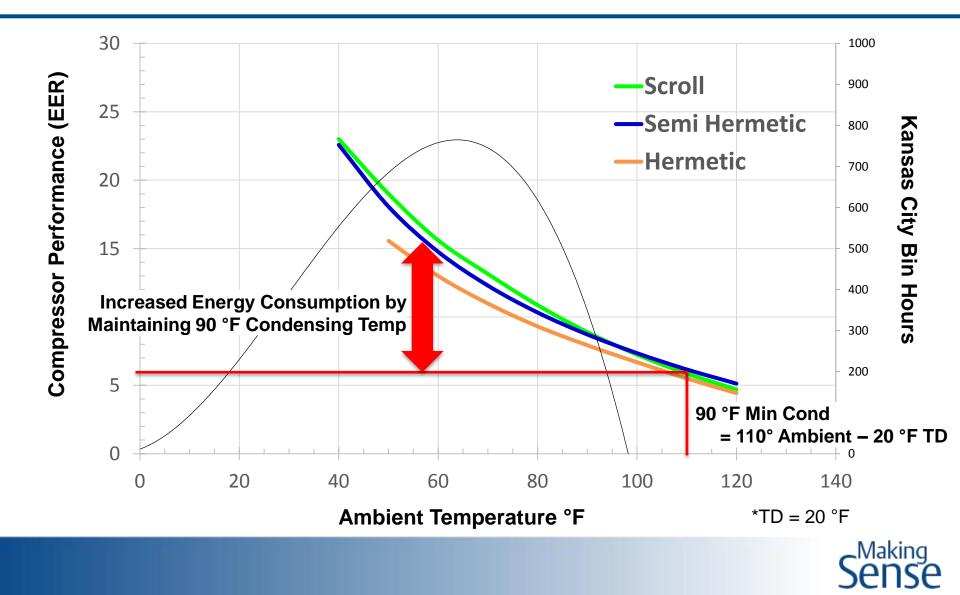
THE NT OF AND	Equipment Mfg.	Wholesaler	Contractors	Design Consultants, Mfg. Reps, Dealers	End Users
1. Equip. Cost Adder	Х	Х	Х	Х	Х
2. Footprint Increase and Space Management	Х	Х	Х	Х	Х
3. Equipment Architecture Change	Х	Х	Х	Х	Х
4. System Architecture Change	Х	Х	Х	Х	Х
5. Inventory and Existing Stock Sell Thru Provision Mgmt.	Х	Х			
6. Compliance Approval Mgmt.	Х	Х			
7. Service Training and Equipment Availability (New Eqp. Cross-Reference)	х	х	х	х	Х
8. Equipment Performance and Product Reposition and Consolidation	х	х		х	
9. Installation Changes and Retrofit Frequency		Х	Х		Х
10. Equipment Operation and User Interface Differences	Х	Х	Х	Х	Х
11. New Maintenance Training	Х	Х	Х	Х	Х

How Well Aware Are You About the Upcoming DOE 2017 Regulations?

- A. Not Aware at All
- **B. Somewhat Aware**
- **C.** Completely Aware

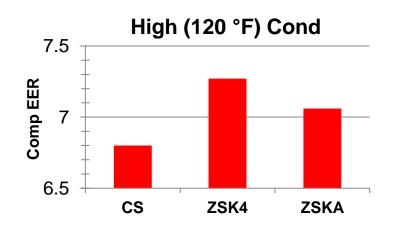
Overall System Improvement Options

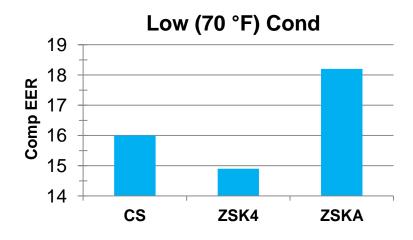
✓ Webinar Topics

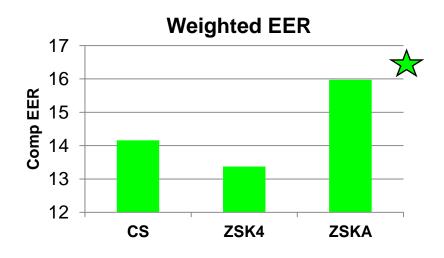

Compression Options	Commercial Refrigeration Equipment	Walk-In Coolers & Freezers	Automatic Commercial Ice Makers	System Options	Commercial Refrigeration Equipment	Walk-In Coolers & Freezers	Automatic Commercial Ice Makers
Highest Efficiency Compressor:				Low Ambient Floating Head		•	
Compressor Motors (Addition of Run Cap)	•	•	•	Pressures	•	•	•
Compression Technology	•	•	•	Improved Defrosts		•	
Enhanced Vapor Injection		•		Alternative Refrigerants	•	•	•
 Variable Speed (BPM) 	•	•	•	LED Lighting			
Fan Motors:							
EC Fan Motors	•	•	•	Improved Doors	•	•	
Variable Speed Fan Motors	•	•	•	Improved Insulation	•	٠	•
Improved Auger Motor			•	Improved Fan Blades	•	•	

What Is Your Organization Doing to Meet the Upcoming DOE 2017 Regulations?

- A. No Actions Today and No Plans
- **B.** No Actions Today, but Currently Working on Plans
- **C.** Currently Taking Some Actions
- D. Fully Invested With Resources to Address

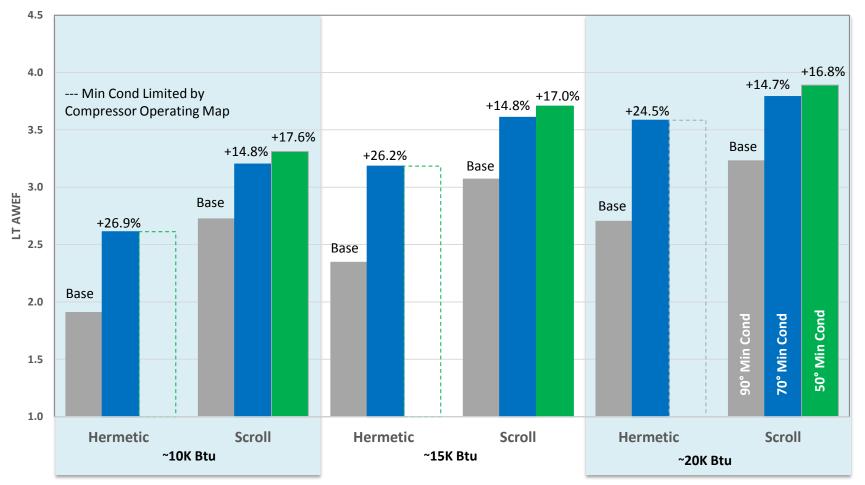



Low Ambients Enable System Efficiency Improvement Opportunities



Compressor Designs Evolved

ARI Condition → Maximizing Efficiency Throughout Entire Year



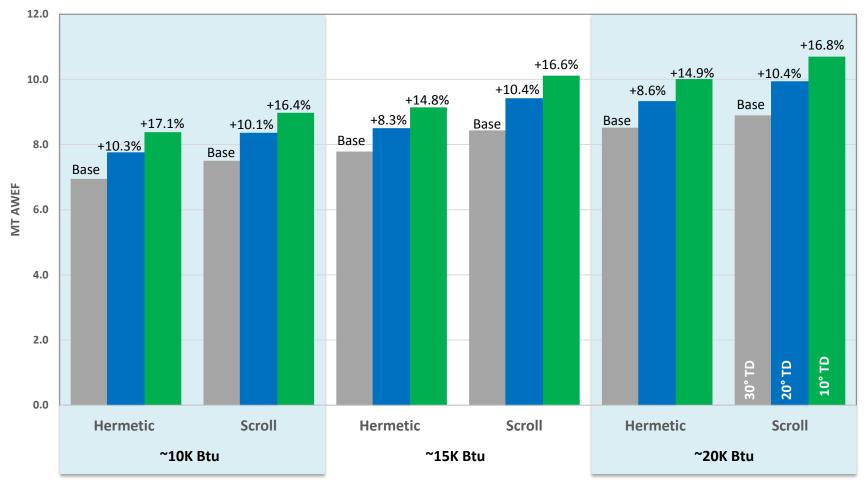
Next Generation of Compressor Optimally Designed for Systems Taking Advantage of Low Condensing

* Medium Temp: Evap = 20 °F RG = ?? SC = ?? Weight EER: 20% @ ARI 80% @ 70 °F Cond

Systems With Low Minimum Ambient Capability Generate Better AWEF Scores

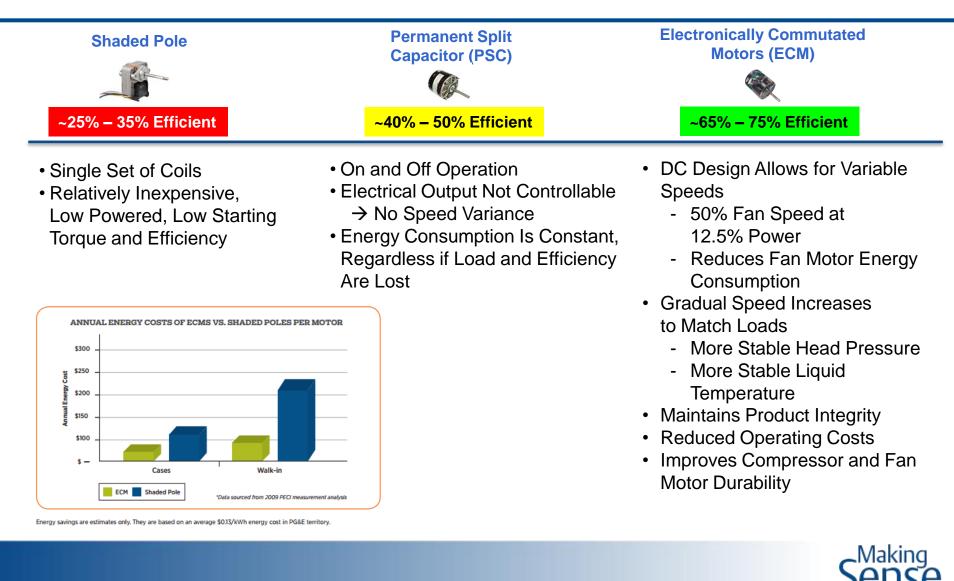
*Outdoor: -22 °F Evap. 5 °F RG 5°SC Electric Defrost

Coil Performance Improvement Options


- Evaporating and Condensing Coils Are Uniquely Designed per Application and System Design
- Coil Performance Is Measured in Temperature Differential (TD)
 - Evap TD = Refrigerated Air Temp. Evap SST
 - Cond TD = Cond SCT Ambient Temp.

Temperature Differential Can Be Improved by

- Increase Surface Area of Heat Exchanger
 - Overall Size
 - Fin Density and/or Fin Size
- Improve Air Flow
 - Fan Blade Speed / Design
- Coil Design: Counter-Flow, MicroChannel



Improved Coil Performance Significantly Impacts System Ability to Meet Regulations

*Outdoor: 23 °F Evap. 41 °F RG 5°SC

Fan Motor Types

JUID

Compressor and Fan Induction Motors

Compressor & Fan Motor Types Motor Improvement Selection

Single-Phase Induction Motor Type	Peak Efficiency Range	Relative Cost
Shaded Pole	20–40%	\$
Resistance Start Induction Run (RSIR)	50–60%	\$\$
Capacitor Start Induction Run (CSIR)	50–60%	\$\$
Permanent Split Capacitor (PSC)	50–70%	\$\$
Capacitor Split Capacitor Run (CSCR)	50–70%	\$\$\$

Equip.	Comp.	Cond. Fan	Evap. Fan	Auger	Pump	
CRE		Improved to ECM	Improved			
WICF	Improved to CSCR			to ECM		
ACIM	or 3-Ph			Brushl	ess DC	

Resulting Efficiency

Equip.	Comp.	Cond. Fan	Evap. Fan	Auger	Pump
CRE	85% →	20% -	→ 70%		
WICF	90%	29% → 70%			
ACIM	45% → 55%	25% → 83%		70% → 83%	25% → 83%

Defrost Schemes

Electric Time-Based Defrosts

- Mechanical Timer Based
- Redundant and/or Wasted Defrost Cycles
- Less Efficient

Smart Electric Demand Defrosts

- Defrost as Needed
- Extra Sensors Needed to Monitor TD Drop Across Coil
- Controller and Algorithms
 Required

Hot Gas

- Recirculation of Hot Gas Discharged From Compressor to Warm Evaporator During a Defrost
- Controls Required
- Extra Piping Required
- Coolers do not need to account for defrost in AWEF calculation
- Defrost energy and heat load apply only to freezers
- Demand-defrost controls yield 2.5 defrosts per day on average
- Nominal values are used for AWEF calculation
- Hot gas defrost typically results in higher/better AWEF than electric defrost
 - Lower energy / lower heat load contribution

Putting It All Together...

Example Efficiency Improvement Analysis for CRE

	Source: Adapted from ADI	1996 Typical	Reach In Freezer/Refrigerator System		
Condensing Unit to System Contribution		<u>Condensing</u> <u>Unit</u>	Anti-Sweat Electri Heater Electri	<u>ic Defrost</u> <u>Evaporato</u> <u>Fans</u>	<u>r Lighting</u>
Assumptions	Energy Consump	otion 77.5%	9.5%	8% 4.5%	0.5%
	Duty C Varies Depending Upon Size o	Fycle 65%	100%	5% 100%	3%
				ransparent De ach-In Refrige	
Example Customer	Current kWh/day		9.42		
System Energy Draws	DOE 2017 kWh/day		6.46		
	Delta		31%		
		Compressor Motor	Fan Motor	Coil	Cond. Unit EER
	Current	CSIR	PSC	"X"	3.80
Condensing Unit Improvements	New	CSCR	ECM	+10% Fin Size	5.00
	Resulting Efficiency Gain	+5–10%	+5%	+10–15%	+25-30%

What Design Option Is Your Organization Most Likely Going to Be Redesigning to or Supporting an Equipment Manufacturer to Design to?

- A. Low Condensing for WICF
- **B.** Evaporator and Condenser Coil Improvements
- **C.** Compression Technology Upgrades
- **D.** System Component Upgrades
- **E.** Other Technology Upgrades

Wrapping up...

✓ Webinar Topics

Compression Options	Commercial Refrigeration Equipment	Walk-In Coolers & Freezers	Automatic Commercial Ice Makers	System Options	Commercial Refrigeration Equipment	Walk-In Coolers & Freezers	Automatic Commercial Ice Makers
Highest Efficiency Compressor:				Low Ambient Floating Head		•	
Motors (Addition of Run Cap)	•	•	•	Pressures	•	•	•
Compression Technology	•	•	•	Improved Defrosts		•	
Enhanced Vapor Injection		•		Alternative Refrigerants		•	•
Variable Speed (BPM)	•	•	•	LED Lighting			
Fan Motors:							
EC Fan Motors	•	•	•	Improved Doors	•	•	
Variable Speed Fan Motors	•	•	•	Improved Insulation	•	•	•
Improved Auger Motor			•	Improved Fan Blades	•	•	

Sense Sense

For More Information...

Past Webinars

- EmersonClimate.com/MakingSense
- WICF AWEF Understanding
- Low Condensing
- EPA Regulations on Delisting Refrigerants

Future Webinars

- Vapor Injected Scroll Technology 101 and Need for DOE 2017

E360: Emerson-Hosted Industry Stewardship Forum

- EmersonClimate.com/E360
- Presentations on Variety of Refrigeration Topics Related to Foodservice and Food Retail

Thank You!

Questions?

DISCLAIMER

Although all statements and information contained herein are believed to be accurate and reliable, they are presented without guarantee or warranty of any kind, expressed or implied. Information provided herein does not relieve the user from the responsibility of carrying out its own tests and experiments, and the user assumes all risks and liability for use of the information and results obtained. Statements or suggestions concerning the use of materials and processes are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe on any patents. The user should not assume that all toxicity data and safety measures are indicated herein or that other measures may not be required.

